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Abstract— Supporting human-robot interaction (HRI) in dy-
namic, multi-party social settings relies on a number of input
and output modalities for visual human tracking, language
processing, high-level reasoning, robot control, etc. Capturing
visual human-centered information is a fundamental input
source in HRI for effective and successful interaction. The
current paper deals with visual processing in dynamic scenes
and presents an integrated vision system that combines a
number of different cues (such as color, depth, motion) to track
and recognize human actions in challenging environments. The
overall system comprises of a number of vision modules for
human identification and tracking, extraction of pose-related
information from body and face, identification of a specific
set of communicative gestures (e.g. “waving, pointing”) as well
as tracking of objects towards identification of manipulative
gestures that act on objects in the environment (e.g. “grab
glass”, “raise bottle”). Experimental results from a bartending
scenario as well a comparative assessment of a subset of
modules validate the effectiveness of the proposed system.

I. INTRODUCTION

As robots become integrated into daily life, they must
increasingly deal with situations in which effective human-
robot interaction is characterized as continuous, natural and
socially appropriate. In this framework, perception of humans
and tracking of humans’ actions and activities can be realized
by an appropriate vision system that is able to operate
in real-time in dynamic and cluttered scenes with variable
illumination, capturing information from multiple users in
the robot’s environment. Towards this goal, the integrated
vision system presented in this work combines a number
of different cues, such as color, depth and motion extracted
from RGB-D sequences to robustly track and recognize
human actions in challenging environments. The proposed
system combines different methods for identification and
tracking of human hands and faces, extraction of pose-
related information from body and face, the latter being
of interest in the HRI domain as attentive cues of users
in the robot’s environment. Furthermore, methods for the
identification of a specific set of communicative gestures,
such as waving and pointing, as well as tracking of objects
towards identification of manipulative gestures that act on
objects in the environment (e.g. “grab glass”, “raise bottle”)
are included in the overall vision system. In this paper the
methods for the identification and tracking of human hands,
faces and objects, as well as the methods for extracting
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pose-related information from body and face are discussed.
These methods form the core components of a vision system
utilized in a bartender robot [1].

For the identification and tracking of human hands and
faces a variety of approaches have been reported in the
literature [2], [3]. Several of them rely on the detection of
skin-colored areas [4], [5]. The idea behind this family of
approaches is to build appropriate color models of human
skin and then classify image pixels based on how well
they fit to these color models. In contrast to blob tracking
approaches, model-based ones [6], [7] do not track objects on
the image plane but, rather, in a hidden model-space. Model-
based approaches are computationally more expensive and
often require the adoption of additional constraints for the
dynamics of the system and for the plausibility of each pose
but they inherently provide richer information regarding the
actual pose of the tracked human, as well as the correspon-
dence of specific body parts with the observed image.

With respect to the extraction of pose-related information
from body and face, there is a large number of different
methods in the current literature [8], [9]. With the emergence
of real-time depth sensors, a few notable works have shown
the usefulness of depth in solving pose estimation problems
for body [10], [11], [12] and face [13], [14], [15]. Most of
existing body pose estimation methods require an initializa-
tion phase for registering users (e.g. specific body pose by
the user for a short time) and assume recovery of body pose
parameters, which limits their efficiency in real life dynamic
environments. With respect to face pose estimation, methods
can be distinguished in appearance and feature-based using
2D images, depth data or combination of both. Appearance-
based methods depend on a time-consuming training phase
(e.g. [14]), and most feature-based methods are limited by
the requirement to define pose-dependent features (e.g. [16]).
Both methods on body- and face-pose tracking presented in
this paper overcome requirements of large training data and
initialization constraints.

In the next section, we give an overview of the integrated
vision system and the individual methods for tracking skin-
colored regions, classifying them as hands and faces, estima-
tion of torso and face pose as well as tracking objects towards
the identification of manipulative gestures (not part of this
paper). Results of the vision system in real environments are
presented in section III.

II. METHODOLOGY OVERVIEW

A block diagram of the components that comprise the
proposed approach is depicted in Fig. 1 and the individual
components are discussed in the following sections. Fig. 1



Fig. 1: Block diagram of the proposed vision system

comprises a number of modules, and notably the hand and
face tracker and the hand/face classifier. The former is
responsible for identifying and tracking hand and face blobs
based on their color and on the information of whether they
lay in the image foreground or not. The latter involves the
classification of the resulting tracks into tracks that belong
to facial blobs and tracks that belong to hands; left and
right hands are also classified separately in this step. Blobs
classified as faces are used to update the color distribution of
skin-pixels, thus enabling the algorithm to quickly adapt to
illumination changes. They are further used as input in the
face and torso pose estimation modules. Hand trajectories
are forwarded to the hand-gesture recognition system (not
described in this paper) taking into consideration detected
object tracks.

A. Hand and Face Tracking

The first block in Fig. 1 is the hand and face tracker. This
component is responsible for identifying and tracking hand
and face blobs based on their color and on the information
of whether they lay in the image foreground or not. To
detect and track faces and hands we employ and extend a
blob-tracking approach [17], according to which foreground,
skin-coloured pixels are identified based on their colour and
grouped together into skin-coloured blobs. Information about
the location and shape of each tracked blob is maintained
by means of a set of pixel hypotheses which are initially
sampled from the observed blobs and are propagated from
frame to frame according to linear object dynamics computed
by a Kalman filter. The distribution of the propagated pixel
hypotheses provides a representation for the uncertainty in
both the position and the shape of the tracked object. This
specific tracking algorithm is able to maintain labeling of
the tracked objects (be it hands of facial regions), even in
cases of occlusions and shape deformations, without making
explicit assumptions about the objects motion, shapes and
dynamics (i.e. how the shape changes over time).

B. Object Tracking

In case we are interested in tracking objects in addition
to hands and faces and these objects are characterized by a
dominant color (e.g. coca cola, perrier, evian) we extend our

technique described in section II-A to track multiple color
blobs based on a number of defined color classes c1, ...cN .
Following background subtraction, foreground pixels are
characterized according to their probability to depict a color-
class and then grouped together into blobs using hysteresis
thresholding and connected components labeling. The algo-
rithm handles the issue of assigning a pixel in more than
one color classes by assigning it to the class with the highest
probability. Then pixels are grouped together into blobs using
hysteresis thresholding and connected components labelling
as in [17].

The posterior probability for each pixel xi with color c to
belong to a color class cN is computed according to Bayes
rule as:

P (cN | xi) =
P (cN )

P (xi)
P (xi | cN ) (1)

where

P (xi) =

N∑
j=1

P (xi | cj)P (cj) (2)

P (cN ) and P (xi) are the prior probabilities of foreground
pixels of a specific color class and foreground pixels xi
having color c, respectively. P (xi|cN ) is the likelihood of
color c for foreground regions of specific color class. All
three components in the right side of the above equation are
computed off-line during training. Tracking of object classes
progresses in the same manner as with skin color classes
(section II-A).

C. Hand and Face Classification

The second step of the proposed system involves the
classification of the resulting skin-colored tracks into tracks
that belong to facial blobs and tracks that belong to hands;
left and right hands are also classified separately in this step.
An incremental classifier has been developed [18] which
extends the above blob tracking approach and which is
used to maintain and continuously update a belief about
whether a tracked hypothesis of a skin blob corresponds
to a facial region, a left hand or a right hand. For this
purpose, we use a simple yet robust feature set which conveys
information about the shape of each tracked blob, its motion
characteristics, and its relative location with respect to other
blobs. The class of each track is determined by incrementally
improving a belief state based on the previous belief state and
the likelihood of the currently observed feature set.

D. Adapting to illumination changes

Blobs classified as faces are also used to update the
color distribution of skin-colored pixels, thus enabling the
algorithm to quickly adapt to illumination changes, which
may deteriorate skin color detection. Hence, a mecha-
nism that adapts the employed representation according to
the recent history of detected skin-colored points is re-
quired [19]. To solve this problem, skin color detection
maintains two sets of prior probabilities. The first set consists
of P (s), P (c), P (c|s), which are the prior probabilities of



foreground skin pixels and foreground pixels having color c
and the likelihood of color c for skin-colored foreground
regions and correspond to the off-line training set. The
second set consists of Ph(s), Ph(c), Ph(c|s), which corre-
spond to the evidence that the system gathers during runtime
from tracks classified as facial tracks with high confidence.
Clearly, the second set reflects more faithfully the “recent”
appearance of hands and faces and is better adapted to the
current illumination conditions. The probability used for skin
color detection is given by:

P (s|c) = γP (s|c) + (1− γ)Ph(s|c) (3)

where P (s|c) and Ph(s|c) can both be derived from Bayes
rule, but involve prior probabilities that have been computed
from the whole training set and from online training, re-
spectively. In 3, γ is a sensitivity parameter that controls
the influence of the training set in the detection process. We
have experimentally set γ = 0.5, which gave good results
in a series of experiments involving gradual variations of
illumination.

E. Torso pose estimation

A topic of particular interest in the HRI domain is the
focus of attention of a person interacting with a robot,
effectively conveying information on whether this person is
seeking attention. Consequently, torso pose estimation and
face pose estimation are identified as important attentive
cues.

Although the hand and face (and object) tracking module
takes into consideration color and motion cues derived from
RGB image sequences, the torso pose estimation module
utilizes an additional cue, that of depth, obtained from an
RGB-D sensor, such as the KinectTM [20]. A model-based
approach is formulated, primarily focusing on overcoming
the requirement of large training data and initialization
constraints of other methods, while exhibiting robustness
in dynamic settings. Face blobs extracted in the previous
steps steer the detection of human body. Initially shoulder
areas are extracted, based on illumination, scale and pose
invariant features on the RGB silhouette. Depth point cloud
information is further utilized to model hypotheses for the
shoulder joints and the human torso based on a set of 3D
geometric primitives. The final estimation of the 3D torso
pose is derived via a global optimization scheme which is
body pose and/or body morphology independent.

Below the major steps of the proposed approach are listed:
• User detection and tracking. Based on face detec-

tion and tracking, the human body silhouettes for the
detected users in the scene are extracted by depth
thresholding and refined via cubic spline fitting to secure
piecewise continuity.

• 2D extraction of shoulder areas. Given the location
of the face, we select sets of points on the RGB
silhouette, delineating possible shoulder areas. Selection
is based on pose and scale invariant features satisfying
certain geometric constraints. The shoulder areas on the

silhouette are characterized each by two body parts, that
of acromial or shoulder point and of axillary or armpit.
The first is the upper part of the shoulder (red points in
Fig. 2) and it’s robustly detectable for all configurations
where the elbow is below the shoulder. This silhouette
region is characterized by high curvature, which is scale
and pose invariant and the respective contour points
posses certain geometric characteristics. The location
of this area on the silhouette can be approximated
via the tangent line. More specifically, we compute
the tangent line for all silhouette points within certain
bounds (estimated proportionally from camera position
and face height) and check whether it intersects the
face area (white segments in Fig. 2). The second is
the area “below” the shoulder (light blue points in
Fig. 2). Similarly, the acromial is visible in most of
the shoulder-elbow configurations and is scale and pose
invariant. For the set of points in this area the normal of
the tangent line intersects the face area (green segment
in Fig. 2).

• Generation and 3D modeling of shoulder joints
hypotheses. Shoulder joints hypotheses are generated
by projecting and proportionally expanding the 2D
shoulder areas on the depth point cloud. Shoulder joints
are approximated by least squares fitting of 3D spheres
to the selected areas on the 3D point cloud. A set
of quality criteria, such as spheres’ radii and number
of iterations are used to eliminate possible outliers.
Figure 3 shows an example of shoulder joint modelling
via sphere fitting.

• Generation and 3D modelling of torso hypotheses.
Each pair of left and right shoulder joint-hypotheses
along with a 3D point on the lower border of the
torso with the pelvis area (extracted via anthropometric
constraints) are used to select the area of 3D points on
the torso surface and generate a torso hypothesis. This
hypothesis is a 3D ellipsoid that is best fitted in a least
squares sense to the selected 3D data on the point cloud.

• Estimation of the 3D torso pose. A global optimization
scheme is adopted for the selection of the best set of
shoulder joints and torso and to derive a refined torso
pose per frame. Additionally, the best shoulder joints
are separately tracked by means of an Extended Kalman
Filter, to further refine shoulder detection and possibly
handle partial occlusions.

F. Face pose estimation

Face pose estimation is extracted via Least-Squares
Matching (LSM) on the RGB image and differential rotations
are computed by analyzing the transformations of the facial
patch across image frames [21]. The problem statement is
finding the corresponding part of the template image patch,
in our case the face path f(x, y) in the search images
gi(x, y), i = 1, ...n− 1.

f(x, y)− ei(x, y) = gi(x, y) (4)



Fig. 2: Modelling shoulder areas. From a single RGB-D
image, assuming the location of the face, 2D points along
the user’s silhouette are selected based on robust 2D features.
Selected points are then used to determine the 3d area (fitted
sphere) which constrains each shoulder.

Fig. 3: Modelling of shoulder joints via sphere fitting.
Delineated acromial(left), shoulder area selected for sphere
fitting (middle), 3D sphere approximating shoulder joint.

Equation (4) gives the least squares grey level observation
equations, which relate the f(x, y) template and gi (x, y)
image functions or image patches. The true error vector
ei (x, y) is included to model errors that arise from radio-
metric and geometric differences in the images.

Assuming we have two images, in our case two consecu-
tive frames, the f(x, y) and g(x, y), a set of transformation
parameters need to be estimated from (4). Since (4) is
nonlinear, it is linearized by expanding it into a Taylor series
and keeping only zero and first order terms.

The estimation model should accommodate enough pa-
rameters in order to be able to model completely the underly-
ing transformation. In the model only geometric parameters
are included and radiometric corrections, e.g. equalization,
for the compensation of different lighting conditions are
applied prior to LSM in template and image. Assuming
that the local surface patch of the face area is a plane to
sufficient approximation (since depth variation exhibited by
facial features are small enough) an affine transformation is
used to model geometric differences between template or
image frame n and search image or image frame n+1. The
affine transformation (5) is applied with respect to an initial
position (x0, y0):

x = a0 + a1 · x0 + a2 · y0
y = b0 + b1 · x0 + b2 · y0

(5)

By differentiating (5) and the parameter vector being
defined according to (6) the least squares solution of the
system is derived.

xT = (da0, da1, da2, db0, db1, db2) (6)

The method requires that the change from frame to frame
is small, considering the speed of the object and the framerate
of the acquired image sequence, for the solution to converge.
To improve performance and handle cases of fast motions we
operate the algorithm at lower resolution levels.

To derive the above-mentioned face rotations we employ
LSM by initializing the template patch, at the center of
the detected blob ellipse and updated the template in image
frame n + 1 based on the estimated affine parameters and
matched to the next image frame. The rotation between the
initial position of the template and the final matched position
is computed by accumulating the differential rotation angles
derived by matching each consecutive template and patch.
Under the assumption that the head approximates a spher-
ical body and using the mapping equations of the vertical
perspective projection we are able to compute the horizontal
rotation of the face as in [21].

III. RESULTS

The proposed methods form the core components of a
vision system utilized in a bartender robot [1]. In all reported
experiments, the resolution of the RGB camera was 640x480.
Although the performance of the system greatly depended
on the number of active hypotheses derived in the hand and
face tracking module as well as in the torso pose estimation
module in all cases, the algorithm was able to process the
cameras input stream at a rate exceeding 20 frames per
second on a standard computer.

Fig. 4 shows results of skin-colored tracking and classi-
fication of hands and faces during fielded evaluation of the
robot bartender. A number of sequences was captured with
a maximum number of four users in the robots environment
for up to 10 minutes each, enacting drink ordering variations.
Blobs classified as faces are marked with an “F”, left hands
are marked with an “L”, and right hands are marked with
an “R”. The proposed approach has been successful in
classifying up to twelve observed tracks and it also managed
to maintain its belief over the whole sequence. There were
a lot of cases in which hand and face hypotheses were
partly occluded or merged as in the example of Fig. 5,
where it can be seen that the face and hands hypotheses
are maintained even in cases of merging to one blob. Similar
results also were observed when object tracking (bottles) was
invoked (Fig. 5), and face, hands and object hypotheses were
successfully identified and tracked.

Torso pose estimation was also tested in the above bar-
tending scenario with Fig. 6 illustrating indicative results of
torso orientation. In all cases the results were more than
promising, as the system could successfully recognize which
user was seeking attention for all visited cases and without
overlooking the fact that our method managed to cope with



(a) (b)

Fig. 4: Bartending environment. (a) Multiple hypothesis
tracking of skin-colored blobs, the IDs of the different
hypotheses is being shown and (b) classification of hands
and faces using the incremental classifier of [18].

(a) (b)

(c) (d)

Fig. 5: Bartending environment, frames out of a sequence
with humans and objects. Classification of hands and faces
using the incremental classifier of [18].

the initialization problem, by recognizing the user and his
torso orientation really fast.

(a) (b)

Fig. 6: Bartending environment, torso orientation estimation.

For a comparative assessment of our method on body pose
estimation, constraint to torso orientation in the horizontal
direction, against ground truth data we conducted a series
of experiments in 3 sequences (summing to a total of 5000
frames of single users performing a variety of poses, in a
controlled office environment. Lacking a motion capturing
device, we used colored markers, on the user’s clothing

instead, in order to automatically detect the actual location
of the shoulders, thus derive ground truth information. Ad-
ditionally, we also tested the skeletonization module of the
OpenNI [22] against the ground truth, compared the results
with those of our method, and produced relative statistics of
both approaches.

(a) (b)

(c) (d)

Fig. 7: Comparison with OpenNI skeletonization module. In
each image, the orientation (in degrees) ground truth and the
estimation of each method is shown at the upper left part of
each image. The thick white arrow depicts the ground truth
orientation, the green one depicts the estimated orientation of
our methodology, and the red arrow depicts the orientation
estimated by the OpenNI.

Fig.7 shows a variety of resulting images from the ground
truth sequences. The user is roughly turned to the camera
and performs a series of poses, by raising either or both
hands (increasing the task difficulty) and rotating his body
in various orientations. The actual (ground truth) orientation
(in degrees) and the ones estimated by the two methods are
superimposed on the images at the upper left part of each
one. The thick white arrow depicts the actual orientation,
while the green and red one illustrate the estimation of our
methodology and OpenNI, respectively. It is interesting to
note that there are cases where OpenNI estimation is far
away from the truth Fig.7(a)and (d), whereas in others (as
the ones of Fig.7(c) ) OpenNI failed to derive an estimation.
On the contrary, our method managed to robustly detect and
track the shoulders in most of the cases and provide a very
accurate estimation for the body orientation.

The face pose estimation method has been also tested
in laboratory conditions as well in other environments with
challenging illumination conditions. Fig. 8 shows results of
face pose estimation in low light conditions, where off-plane
and in-plane face rotations are robustly tracked. Moreover,
a quantitative evaluation has been carried out using ground
truth information [21]. The user was standing in front of
the camera and turning his head in predefined directions,
defined in the range of 0 ◦ ± 180 ◦ with an angular step of



10 ◦. Results were derived from image sequences of a total
of 7000 image frames and could be seen that the algorithm
achieves high success rates for low angles (user looks in
directions close to the direction of the camera) which are
decreased for higher angles. The algorithm also maintains
significant success rates (more than 50%) for angles up to
120 ◦, where only a small part of the facial patch is visible.

To conclude it is also of interest to note that the vision
system was used during a user evaluation study of the
robot bartender, performed with a number of users enacted
variations on drink-ordering scenarios (31 participants in 3
scenario variations), explained thoroughly in [1]. For the
purposes of the above study, customers were considered to be
seeking attention from the robot bartender if (a) they were
close to the bar, and (b) their torso was oriented towards
the bartender. This simple rule was based on a study of
customer behaviour in natural bar settings [23], where nearly
all customers were found to exhibit those behaviours when
initiating a drink-ordering transaction. The vision system
was running over long sequences and was able to extract
the required information to initiate the interaction of users
with the robot, resulting to many successful drink-ordering
transactions.

Fig. 8: Head pose estimation in real-world environment with
challenging illumination conditions.

IV. CONCLUSIONS

The paper presented an integrated vision system targeted
for HRI scenarios. The system has been designed to work
in dynamic, multi-party social settings combining different
color, depth and motion cues, towards tracking and recogni-
tion of human actions engaged in a robotic environment. The
system has been tested in a bartending scenario with overall
success. Moreover, the torso estimation module was tested
against OpenNI using ground truth data, exhibiting superior
performance.
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