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Abstract— This paper presents an integrated approach for
tracking hands, faces and specific facial features (eyes, nose,
and mouth) in image sequences. For hand and face tracking,
we employ a state-of-the-art blob tracker which is specifically
trained to track skin-colored regions. The skin-color tracker
is extended by incorporating an incremental probabilistic clas-
sifier, which is used to maintain and continuously update the
belief about the class of each tracked blob, which can be left-
hand, right hand or face as well as to associate hand blobs
with their corresponding faces. Then, in order to detect and
track specific facial features within each detected facial blob, a
hybrid method consisting of an appearance-based detector and
a feature based tracker is employed. The proposed approach is
intended to provide input for the analysis of hand gestures and
facial expressions that humans utilize while engaged in various
conversational states with robots that operate autonomously
in public places. It has been integrated into a system which
runs in real time on a conventional personal computer which is
located on the mobile robot itself. Experimental results confirm
its effectiveness for the specific task at hand.

I. INTRODUCTION

In this paper, we propose an integrated approach to

identify and track human hands, human faces and specific

facial features in image sequences. The proposed approach

is mainly intended to support natural interaction with au-

tonomously navigating robots that guide visitors in museums

and exhibition centers and, more specifically, to provide

input for the analysis of hand gestures and facial expressions

that humans utilize while engaged in various conversational

states with a robot. The operational requirements of such an

application challenge existing approaches in that the visual

perception system should operate effectively under diffi-

cult conditions regarding occlusions, variable illumination,

moving cameras, and varying background. The proposed

approach combines and integrates a set of state-of-the-

art techniques to solve three different but closely related

problems: (a) identification and tracking of human hands

and human faces which are detected as skin-colored blobs,

(b) robust classification of the identified tracks to faces and

hands, and, finally, (c) identification and tracking of specific

facial features (eyes, nose and mouth) within each recognized

facial blob.

For the first of the above defined problems (identification

and tracking of human hands and faces) a variety of ap-

proaches have been reported in the literature [1]. Several of

them rely on the detection of skin-colored areas [2]. The

idea behind this family of approaches is to build appropriate
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color models of human skin and then classify image pixels

based on how well they fit to these color models. On top

of that, various segmentation techniques are used to cluster

skin-colored pixels together into solid blobs that correspond

to human hands and/or human faces.

In contrast to blob tracking approaches, model based

ones [3] do not track objects on the image plane but, rather,

in a hidden model-space. This is commonly facilitated by

means of sequential Bayesian filters such as Kalman or

particle filters. The state of each object is assumed to be

an unobserved Markov process which evolves according to

specific dynamics and which generates measurement predic-

tions that can be evaluated by comparing them with the actual

image measurements. Model based approaches are compu-

tationally more expensive and often require the adoption of

additional constraints for the dynamics of the system and

for the plausibility of each pose but they inherently provide

richer information regarding the actual pose of the tracked

human as well as the correspondence of specific body parts

with the observed image.

In this work, we employ and extend a blob-tracking

approach which is based on our previous work [4]. The blob-

tracking approach, described in section III, has been extended

by incorporating an incremental classifier which is used to

maintain and continuously update a belief about whether a

tracked hypothesis corresponds to a facial region, a left hand

or a right hand (see section IV).

In the field of facial feature detection and tracking a

number of approaches have already been presented in the

existing literature [1]. Still, complexities arising from inter-

personal variation (i.e. gender, race), intra-personal changes

(i.e. pose, expression) and inconsistency of acquisition con-

ditions render the task difficult and challenging. Related

methods can be categorized on the basis of their inherent

techniques. Facial feature localization based on attributes

of geometrical shapes has been adopted in several works,

e.g. [5], but the methods fail to show good performance

in face images with large pose and expression variation.

A variety of shape-based approaches tries to overcome this

limitation by employing deformable templates [6], graph

matching [7], active contours [8] or Hough transforma-

tion [9]. Color-based approaches were exploited by face

detection systems to verify that a candidate blob is a face, by

observing the darker appearance of facial elements in relation

to their surroundings or local context [10]. Such approaches

although may succeed to perform fast detection, they usually

encounter difficulties in robustly detecting the skin color in

the presence of different illuminations. Approaches based



Fig. 1. Block diagram of the proposed system for hands and face tracking.

on machine learning techniques, like Principal Components

Analysis [11], Neural Networks [12] and Adaboost Clas-

sifiers [13] require a large number of images for training

and are computationally less efficient in the case of high

resolution video sequences.

For detecting and tracking the facial features within the

detected facial blobs, we propose an approach which com-

bines the boosted cascade detector of Viola and Jones [14]

with a feature based tracker and is described in section V.

The resulting, combined detector and tracker extends our

previous work on facial feature localization [15] in that

specific anthropometric constraints are imposed after the

initial detection step in order to enforce the elimination of

false positives and provide reliable initial values for tracking.

The purpose of the above-described approach for hand,

face and facial features tracking is to support recognition

of hand gestures and facial expressions for rich interaction

with an autonomous mobile robot. It has been integrated

into a system which runs in real time on a conventional

personal computer which is located on the mobile robot

itself. Experimental results presented in section VI, confirm

its effectiveness for this demanding task.

II. METHODOLOGY

A block diagram of the components that comprise the

proposed approach is depicted in Figure 1. The first block

in Figure 1 is the hand and face tracker. This component is

responsible for identifying and tracking hand and face blobs

based on their color and on the information of whether they

lay in the image foreground or not. The second step of the

proposed system involves the classification of the resulting

tracks into tracks that belong to facial blobs and tracks that

belong to hands; left and right hands are also classified

separately in this step.

Hand trajectories are forwarded to the hand-gesture recog-

nition system (not described in this paper) while facial re-

gions are further analyzed in order to detect and track specific

facial features (eyes, nose and mouth) and to facilitate facial

gestures and expression recognition at a later processing

stage of the system (also not part of this paper).

In the following sections we describe each of the above

mentioned components in detail.

III. HAND AND FACE TRACKING

In this work, hand and face regions are detected as solid

blobs of skin-colored, foreground pixels and they are tracked

over time using the propagated pixel hypotheses algorithm

[4]. This specific tracking algorithm allows the tracked

regions to move in complex trajectories, change their shape,

occlude each other in the field of view of the camera and

vary in number over time.

Initially, the foreground area of the image is extracted

by the use of a background subtraction algorithm [16].

Then, foreground pixels are characterized according to their

probability to depict human skin and then grouped together

into solid skin color blobs using hysteresis thresholding and

connected components labeling. The location and the speed

of each blob is modelled as a discrete time, linear dynamical

system which is tracked using the Kalman filter equations.

Information about the spatial distribution of the pixels of

each tracked object (i.e. its shape) is passed on from frame

to frame by propagating a set of pixel hypotheses, uniformly

sampled from the original object’s projection, to the target

frame using the object’s current dynamics, as estimated

by the Kalman filter. The density of the propagated pixel

hypotheses provides the metric which is used in order to

associate observed skin-colored pixels with existing object

tracks in a way that is aware of each object’s shape and the

uncertainty associated with its track.

(a) (b)

(c) (d)

Fig. 2. The tracking approach. (a) Initial image, (b) background subtraction
result, (c) pixel probabilities, (d) hand and face hypotheses.

Figures 2 and 3 demonstrate the operation of the employed

hand and face tracker on a test sequence which involves

a man performing hand gestures in an office environment.

Figure 2(a) shows a single frame from this sequence. Figures

2(b) and 2(c) depict foreground pixels and skin-colored pix-

els, respectively. White pixels are pixels with high probability

to be foreground/skin-colored pixels and black pixels are

non-skin pixels. Finally, Fig. 2(d) depicts the hand and face

hypotheses as tracked by the proposed tracker.



The output of the tracking algorithm in a number of frames

from the same sequence is demonstrated in Fig. 3. As can

be easily observed, this specific tracker succeeds in keeping

track of all the three hypotheses, despite the occlusions and

the blob merging events introduced at various fragments of

the sequence.

(a) (b)

(c) (d)

Fig. 3. Indicative tracking results for four segments of the office image
sequence used in the previous example. In all cases the algorithm succeeds
in correctly tracking the three skin-colored regions.

A more detailed explanation of the above-described hand

and face tracker is given in [4].

IV. CLASSIFYING BETWEEN HANDS AND FACES

To proceed with higher level tasks, like hand gestures

and facial expressions recognition, one has to distinguish

between tracks that belong to hands and tracks that belong

to faces. Moreover, for hand tracks, one has to know which

tracks belong to left hands and which tracks belong to right

hands. Towards this goal, we have developed a technique

that incrementally classifies a track into one of three classes:

faces, left hands and right hands.

The input of the technique is a feature vector Ot which

is extracted at each time instant t and is used to update the

belief of the robot Bt regarding the class F of each track.

The feature vector Ot consists of the following components:

• The periphery-to-area ratio rt of the current track’s blob.

The ratio rt is normalized to the corresponding ratio

of a circle and provides a measure of the complexity

of the blob’s contour. It is expected that hands will

generally have more complex contours than faces, i.e.

larger values for rt .

• The vertical and the horizontal components ut and vt of

the speed of a tracked skin-colored blob. The intuition

behind this choice is that hands are generally expected

to move faster than faces. Moreover, faces are not

expected to have large vertical components in their

motion.

• The orientation θt of the blob. It is expected that faces

will tend to have orientations close to π/2.

• The location lt of the blob within the image. This

location is relative to the location of each possible head

hypothesis and it is normalized according to the radius

of this head, as it will be explained later in this section.

We define the belief Bt of the robot at time instant t to

be the probability that the track belongs to class f , given all

observations Oi up to time instant t. That is:

Bt = P(F = f |O1, . . . ,Ot−1,Ot) (1)

=
P(Ot |F = f ,O1, . . . ,Ot−1)P(F = f |O1, . . . ,Ot−1)

P(Ot |O1, . . . ,Ot−1)
(2)

Since the denominator P(On|O1, . . . ,Ot−1) is independent

of F , we can substitute it with 1/α and we obtain

Bt = αP(On|F = f ,O1, . . . ,Ot−1)P(F = f |O1, . . . ,Ot−1)
(3)

= αP(On|F = f ,O1, . . . ,Ot−1)Bt−1 (4)

The above equation defines an incremental way to com-

pute Bt , i.e. to classify the track by incrementally improving

the belief Bt based on the previous belief Bt−1 and the current

observations.

Taking into account the Markov property and the indepen-

dence assumptions indicated by Figure 4(a), we can further

simplify the above equation:

Bt = αP(Ot |F = f )Bt−1 (5)

In order to compute the term P(Ot |F = f ) in the right

hand of Equation (5), we assume the naive Bayes classifier

depicted in the graph of Figure 4 (b). According to this graph,

we have at time instant t:

P(Ot |F) =
P(F,Ot)

P(F)
(6)

= P(rt |F)P(ut |F)P(vt |F)P(θt |F)P(lt |F) (7)

(a) (b)

Fig. 4. (a) Bayes graph encoding the independence assumptions of our
approach, (b) The naive Bayes classifier used to compute the P(Ot |F = f ).

All the probabilities in the right side of Equation (7) can be

estimated according to training data. Hence they are encoded

and stored in appropriate look-up tables, thus permitting real-

time computations.

The lookup tables for P(rt |F), P(ut |F), P(vt |F) and

P(θt |F) are depicted in Figure 5. They are 1D lookup

tables encoding the relevant quantity (r, u, v, or θ ) with the

probability of appearance of this quantity in the training set.

These lookup tables are identical for left hands and right

hands but they are different in the case of faces. This is

because, the relevant quantities are not expected to vary

significantly between left and right hands but, as can be



easily observed in Figure 5, they differ significantly in the

case of faces.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. 1D Look-up tables used for the computation of Equation (7). (a):
P(rt |F = f ace), (b): P(ut |F = f ace), (c): P(vt |F = f ace), (d): P(θt |F =
f ace), (e): P(rt |F = hand), (f): P(ut |F = hand), (g): P(vt |F = hand), (h):
P(θt |F = hand).

P(lt |F), which is the probability of a blob being observed

at location lt given its class F , is computed and stored

differently for faces and differently for hands.

For faces, P(lt | f ace) is retrieved as the probability for a

facial blob to be centered at this specific image location lt .

Obviously, the 2D lookup table for P(lt | f ace) depends on the

actual application at hand and involves assumptions about the

pose of the camera and the relative location of the human(s)

with respect to the camera. In our case, which involves a

human-robot interaction application, we assumed a camera

placement such that the field of view of the camera includes

the upper body part of one or more humans standing at a

convenient distance between 0.5m and 2m in front of the

robot. The actual lookup table that we compiled and used in

our experiments is depicted in Figure 6(a).

(a) (b) (c)

Fig. 6. 2D Look-up tables used for the computation of P(lt |F) in
Equation (7). (a) for faces, (b) for left hands, (c) for right hands.

For hands, P(lt |le f t hand) and P(lt |right hand) are com-

puted relatively to the location of the corresponding person’s

face. Since we don’t know which is the corresponding per-

son’s face, we marginalize over all possible face hypotheses.

That is, for P(lt |right hand) we have:

P(lt |right hand) = ∑
h

P(lt |right hand,h = f ace)P(h = f ace)

(8)

and similarly for the left hand:

P(lt |le f t hand) = ∑
h

P(lt |le f t hand,h = f ace)P(h = f ace)

(9)

Figures 6(b) and 6(c) depict the resulting lookup tables

for P(lt |right hand,h = f ace) and P(lt |le f t hand,h = f ace).

V. DETECTION AND TRACKING OF FACIAL

FEATURES

For tracking individual facial features within the detected

facial blob, we utilize a hybrid approach by integrating

an appearance-based detector and a feature-based tracker

for the eyes, the nose and and mouth. The facial feature

detector and tracker combines the advantages of appearance-

based methods in detection (i.e. robustness in various lighting

conditions), and feature-based methods in tracking (i.e. com-

putational speed and high accuracy when initial estimation

is close to the real solution) and permits robust identification

of the facial features as well as real-time computations.

The overview of the implemented approach is illustrated

in Figure 7 and is based on three steps: (a) initial detection

of facial features using an appearance-based detector, (b)

elimination of false positive detections via the application

of anthropometric constraints, and, (c) real time tracking of

the detected and filtered facial features using a feature-based

method.

Fig. 7. Diagram of the proposed approach for detection and tracking of
facial features.

Fig. 8. Landmarks in the Anthropometric Face Model.

For the initial detection of facial features we use the

Boosted Cascade Detector of Viola and Jones [14]. The

detector has been designed for general object detection and



Fig. 9. The belief of each of the three tracks of the office sequence, as it evolves over the first 500 frames. The solid blue lines correspond to the
probability of each blob being a face blob, the dot-dashed green lines correspond to left hands and the dashed red lines corresponds to right hands.

has gained widespread acceptance due to the availability of

an implementation in an open source library [17]. In our

case, for the detection of the features within each face blob,

individual sets of Haar-like features for eyes, nose and mouth

are utilized and the method is initialized with frontal-view

faces.

An important factor which affects both the reliability of

detection and the tracking accuracy of facial features is the

size of the detected face blob. According to Tian [18], facial

features become hard to detect when the face region is

smaller than a threshold of approximately 70× 90 pixels.

Therefore, the procedure of facial feature detection and

tracking is only activated when the face blob satisfies the

above size requirements.

After all features have been detected, specific anthropo-

metric constraints are applied in order to cast out false posi-

tives. Motivated by the work of Sohail and Bhattacharya [19],

we have collected a large set of measurements from images

depicting faces in frontal view. The collected measurements

were used to built an anthropometric model of the human

face and to define the necessary thresholds and validation

gates used to filter out false positive detections. The selected

validation criteria involve the location and the size of the

eyes, the nose and the mouth. Landmarks on other regions

such as the eyebrows, used, for example, in [19], were not

selected because they often proved to be occluded by hair,

eyeglasses or, in some cases, they were entirely non-existent.

More specifically, we define the following criteria:

• All four selected features (eyes, nose, mouth) should be

detected.

• The normalized sizes of the two eyes and mouth should

be within certain bounds.

• The normalized distance between the midpoint of the

eye centers and nose tip should be approximately 0.6.

That is D2/D1 ≃ 0.6, where D2 is the distance between

points P3 and P4 (see Figure 8).

• The normalized distance between the midpoint of eye

centers and mouth center should be approximately ≃
1.2. That is D3/D1 ≃ 1.2, where D3 is the distance

between points (P3 and P5).

If the above criteria are not met by the system and a new

re-initialization is attempted (by repeating the facial feature

detection step) in the next frame, otherwise the tracking

procedure is invoked. It is to be noted that the nose region

is not tracked because it’s actual location is not considered

important for our target application, which is expression

recognition and visual speech detection.

Our tracking approach is based on template matching

which is implemented using the normalized cross-correlation

(NCC) measure as matching score/quality measure. The

selection of NCC as quality measure is justified as only small

deviations in the relative positions of the feature areas with

respect to the position of the face blob in the image are

expected. The detected eye and mouth regions from each

face are used as templates in the matching process, updated

in every consecutive frame and the matching score is used

to block results of low reliability.

VI. EXPERIMENTAL RESULTS WITH REAL

WORLD DATA

Figure 10 presents hand and face classification results

for various frames of the office sequence of Fig. 3. Blobs

classified as faces are marked with an “F”, left hands are

marked with an “L”, and right hands are marked with an “R”.

The proposed approach has been successful in classifying

the three observed tracks and it also managed to maintain its

belief over the whole sequence.

(a) (b)

(c) (d)

Fig. 10. Four frames of a sequence depicting a person performing various
hand gestures in an office environment.

Figure 9 depicts the belief of each of the three tracks of

the office sequence, as it evolves over the first 500 frames of

this sequence. As can be easily observed, the belief of each

track is initially uncertain but very soon it stabilizes to the

correct class. The belief stays stable to the correct classes

thoughout the whole sequence consisting of a total of 2600



frames (for clarity of presentation, only the first 500 frames

are shown in these graphs).

(a) (b) (c)

(d) (e) (f)

Fig. 11. Frames of two different sequences captured in an exhibition center
that show results from hand, face and facial feature tracking.

(a) (b) (c)

(d) (e) (f)

Fig. 12. Frames of different sequences captured in an exhibition center
that show results from facial feature tracking of a person.

Figure 11 depicts some frames from two additional se-

quences captured by the robot’s camera in two different

application environments within an exhibition center. In all

our experiments the algorithm successfully tracked the skin-

colored blobs and very fast converged to the correct class for

each track (i.e. left hands, right-hands and faces), following

convergence curves which were very similar to the ones

depicted in Fig. 9. Eyes, nose and mouth regions were also

correctly localized and tracked, even in cases of usual off-

plane head rotations and different facial expressions.
Figure 12 depicts some additional facial feature tracking

results from two additional, close-up, sequences captured
at the same exhibition center. As with the previous figure,
facial features were correctly localized and tracked. More
experimental results from different application environments
(office, exhibition center) can be found in http://www.

ics.forth.gr/˜pateraki/handfacetracking.html.

VII. CONCLUSIONS

In this paper we have presented an integrated approach for track-
ing of hands, faces and facial features in image sequences, intended
to support natural interaction with autonomously navigating robots
in public spaces and, more specifically, to provide input for the
analysis of hand gestures and facial expressions that humans utilize
while engaged in various conversational states with the robot.

For hand and face tracking, we employ a blob tracker which
is specifically trained to track skin-colored regions. The skin-color
tracker is extended by incorporating an incremental probabilistic

classifier which is used to maintain and continuously update the
belief about the class of each tracked blob which can be a left-
hand, a right hand or a face. Facial feature detection and tracking
is performed via the employment of state-of-the-art appearance-
based detection coupled with feature-based tracking, using a set of
anthropometric constraints.

Experimental results have confirmed the effectiveness of the
proposed approach proving that the individual advantages of all
involved components are maintained, leading to implementations
that combine accuracy, efficiency and robustness. Future work
includes tracking hands, faces and facial features of multiple people
in the scene.
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