

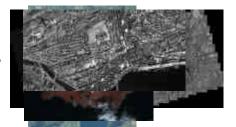
Radiometric and Geometric Evaluation of IKONOS GEO Images and their Use for 3D Building Modelling

E. Baltsavias, M. Pateraki, L. Zhang Institute of Geodesy and Photogrammetry ETH Zürich

ETH

Outline

- Description of Image Data
- Radiometric Analysis
- Preprocessing
- Orthoimage Generation
- Building Extraction
- Conclusions


STH

ETH

Image Data

Nadir PAN (Melbourne)

Rad. Quality Building extraction Conclusions

Preprocessing by SI:

Rad. Quality

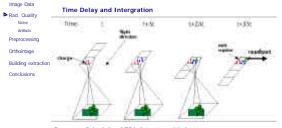
•Modulation Transfer Function Correction (MTFC) Sharpen image especially in flight direction due to TDI imaging (typically 16 lines), which causes blurring

Radiometric Quality

Orthoimage Building extraction Conclusions

Dynamic Range Adjustment (DRA)

Stretchgrey values to better occupy grey value range


Additional artifacts are due to compression from 11 to 2.6 bit (esp. in homogeneous areas)

ETH

Institute of Geodesy

Institute of Geodesy

Radiometric Quality

Exposure Principle of TDI detector with 3 stage

Preprocessing

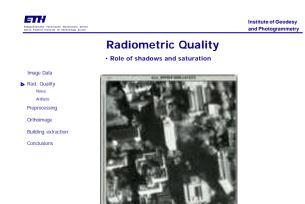
Rad. Quality

Preprocessing by SI:

•Modulation Transfer Function Correction (MTFC)

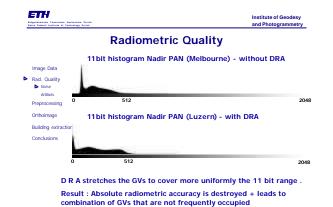
Orthoimage Building extraction Conclusions

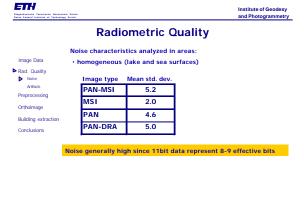
Sharpen image especially in flight direction due to TDI imaging (typically 16 lines), which causes blurring


Radiometric Quality

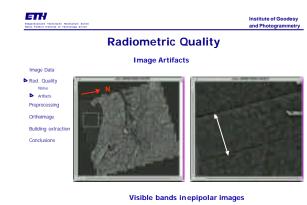
•Dynamic Range Adjustment (DRA)

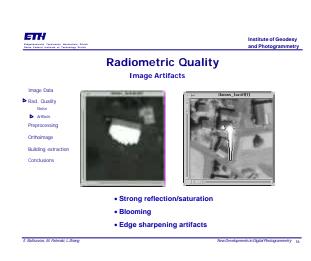
Stretchgrey values to better occupy grey value range


Additional artifacts are due to compression from 11 to 2.6 bit (esp. in homogeneous areas)

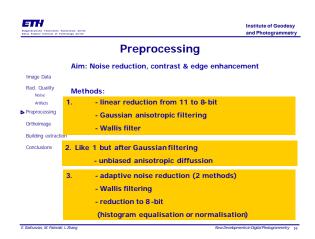


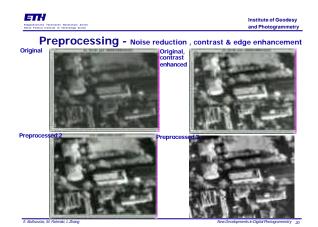


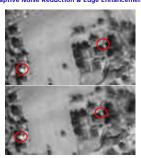




Institute of Geodesv







Rad. Quality

Building extraction

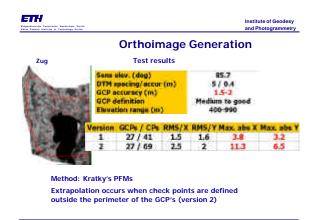
Conclusions

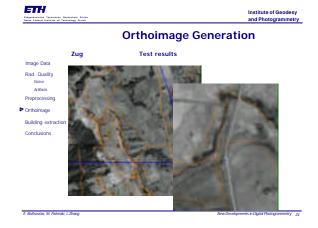
Methods:

ETH

Rad. Quality

Orthoimage

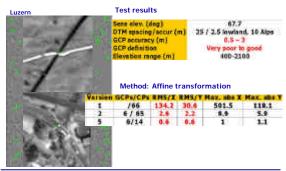

Conclusions


Building extraction

• Kratky's Polynomial Mapping Functions (PMFs) • Relief corrected affine transformation Reference plane -> reference plane of DTM

3 GCP's are needed but 4-6 are suggested

Orthoimage Generation



Institute of Geodesy and Photogrammetry Eldgestenische Tenkolunte Henkuckelle Zürink Beine Federal innilitäte all Tenkonings Zürink

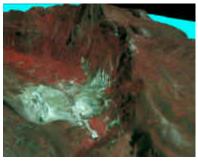
nstitute of Geodesy

Orthoimage Generation

Orthoimage Generation

Test results

Sens elev, (deg) 73.5
DTH specingl accur (ns) 2 / 3.3
GCP accuracy (nr) GCP definition
Elevation range (in)


Method: Affine transformation

Version GCP's/CPs RH5/X RH5/YMax. abs X Max. abs Y 1 / 38 106.1 79.5 151.1 127.8
2 4/34 1.7 1 4.4 2.3
3 4/15 0.0 0.6 1.5 1.4

ETH

Institute of Geodesy

Orthoimage Generation - Nisyros

E. Baltsavias, M. Pateraki, L.Zhang New Developments in Digital Photogrammetry 2

Eldgesteiliche Festisische Mestauteite Zürlich

Institute of Geodesy

Building Extraction

• 19 roof corners measured by GPS

 Measured in mono and stereo in all three images of Melbourne

Results from stereo images and 6 GCPs (RMSE):

Affine: XY = 0.6m Z = 0.8m DLT: XY = 0.7m Z = 1.0m RPCs: XY = 0.7m (-bias) Z = 0.9m

Institute of Geodes

Foresteen Transact Transact

Building Extraction

Aerial Photography (1:15K)

Ikonos 1m Pan Stereo

Image Data
Rad. Quality
Noise
Articles
Preprocessing
Ortholmage

Building extraction
Conclusions

• Omission of 15% of buildings (small & large)

EITH Eidgesteinin Tenholunk Honbucksin Zürink

Institute of Geodesy and Photogrammetry

Building Extraction

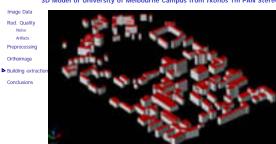
Conducive to building feature measurement

E. Baltsavias, M. Pateraki, L.Zhang

New Developments in Digital Photogrammetry 30

Building Extraction

Aerial Photography (1:15k)



lkonos stereo of questionable value to building feature measurement in this

Building Extraction

3D Model of University of Melbourne Campus from Ikonos 1m PAN Stereo

Produced with CyberCity Modeler

ETH

Institute of Geodesy and Photogrammetry

Building Extraction

3D Model of University of Melbourne Campus from Ikonos 1m PAN Stereo

► Building extraction Conclusions

E. Baltsavias, M. Pateraki, L.Zhang

Produced with CyberCity Modeler

ETH

Rad. Quality

▶ Building extract

Conclusions

Building Extraction

Aerial Photography (1:15K)

Ikonos 1m Stereo Imagery

ETH

Institute of Geodesy and Photogrammetry

Conclusions

- Influence of factors, beyond the control of user, and lack of consistency/homogeneity will generate difficulties in exploiting full potential of imagery
- Noise and artifacts significant; SI preprocessing problematic; improvement through intelligent postprocessing possible.
- Orthoimage generation:

Building extraction ► Conclusions

- -1-2 m accuracy possible from Geo with simple methods and down to 3 GCPs; sub-metre possible with good GCPs and DTM (or high elevation)
- Higher-cost Reference, Pro & Precision products or products with RPCs (OrthoKit) not necessary
- Building feature determination to 1m accuracy is feasible in optimal cicumstances, but highly dependent on both building characteristics and, especially, imaging & operational factors.
- Problematic if emphasis is on completeness of scene description, both in terms of buildings detected & structural detail.