Visual Human-Robot Interaction within the INDIGO project
Haris Baltzakis, Maria Pateraki and Panos Trahanias
{xmpalt,pateraki,trahania}@ics.forth.gr

The INDIGO project
INDIGO aims to develop human-robot communication technology for intelligent mobile robots that operate and serve tasks in populated environments (such as museums and exhibition centers). To achieve this goal, the project exploits and advances technologies from various sectors:

- Robotic hardware
- Multilingual speech recognition
- Robust natural language interpretation
- Advanced navigation capabilities
- Appropriate user models for humans and robot
- Visual perception capabilities:
 a. Identify and track the face and the hands
 b. Visually recognize/interpret hand & face gestures
 c. Visual speaker detection
 d. Recognition of a set of simple facial features and/or expressions

Major Challenges of the visual system
- Unconstrained lighting conditions, dynamic backgrounds
- Real-time processing at high frame rates
- Distinguish between face and hands
- Need for occlusion handling
- In-plane and off-plane head rotations

Sample results
From pixel probabilities to hand/face hypotheses
Using laser based tracking to improve results
Motion patterns to detect hand gestures
Using number/relative location of fingertips for hand gesture recognition

Head pose tracking with Least Squares Matching (LSM)
Facial feature detection and tracking

Block diagram

System Architecture

More information on INDIGO project homepage: http://www.ics.forth.gr/indigo