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Abstract— This paper presents an integrated approach for
tracking hands, faces and specific facial features (eyes, nose,
and mouth) of multiple persons in image sequences. For hand
and face tracking, we employ a state-of-the-art blob tracker
which is specifically trained to track skin-colored regions. The
skin-color tracker is extended by incorporating an incremental
probabilistic classifier used to maintain and continuously up-
date the belief about the class of each tracked blob, which can be
left-hand, right hand or face as well as to associate hand blobs
with their corresponding faces. Then, in order to detect and
track specific facial features within each detected facial blob, a
hybrid method consisting of an appearance-based detector and
a feature-based tracker is employed. The proposed approach is
intended to provide input for the analysis of hand gestures and
facial expressions that humans utilize while engaged in various
conversational states with robots that operate autonomously
in public places. It has been integrated into a system which
runs in real time on a conventional personal computer which is
located on the mobile robot itself. Experimental results confirm
its effectiveness for the specific task at hand.

I. INTRODUCTION

In this paper we propose an integrated approach to identify
and track human hands, human faces and specific facial fea-
tures in image sequences. The proposed approach is mainly
intended to support natural interaction of multiple persons
with autonomously navigating robots that guide visitors in
museums and exhibition centers and, more specifically, to
provide input for the analysis of hand gestures and facial
expressions that humans utilize while engaged in various
conversational states with a robot. The proposed approach
extends, combines and integrates a set of state-of-the-art
techniques to solve three different but closely related prob-
lems: (a) identification and tracking of human hands and
human faces which are detected as skin-colored blobs, (b)
robust classification of the identified tracks to faces and
hands, and, finally, (c) identification and tracking of specific
facial features (eyes, nose and mouth) within each recognized
facial blob.

For the first of the above defined problems (identification
and tracking of human hands and faces) a variety of ap-
proaches have been reported in the literature [1]. Several of
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them rely on the detection of skin-colored areas,e.g. [2]. The
idea behind this family of approaches is to build appropriate
color models of human skin and then classify image pixels
based on how well they fit to these color models. On top
of that, various segmentation techniques are used to cluster
skin-colored pixels together into solid blobs that correspond
to human hands and/or human faces.

In contrast to blob tracking approaches, model based
ones [3] do not track objects on the image plane but, rather,
in a hidden model-space. This is commonly facilitated by
means of sequential Bayesian filters such as Kalman or
particle filters. The state of each object is assumed to be
an unobserved Markov process which evolves according to
specific dynamics and which generates measurement predic-
tions that can be evaluated by comparing them with the actual
image measurements. Model based approaches are compu-
tationally more expensive and often require the adoption of
additional constraints for the dynamics of the system and
for the plausibility of each pose but they inherently provide
richer information regarding the actual pose of the tracked
human as well as the correspondence of specific body parts
with the observed image.

In the field of facial feature detection and tracking a
number of approaches have already been presented in the
existing literature [1]. Still, complexities arising from inter-
personal variation (i.e. gender, race), intra-personal changes
(i.e. pose, expression) and inconsistency of acquisition con-
ditions render the task difficult and challenging. Related
methods can be categorized on the basis of their inherent
techniques. Color-based approaches were exploited in earlier
systems by analyzing prior knowledge of color properties
of facial features. Although this category of approaches is
sensitive to illuminations and head pose changes, it still gains
attention in the literature [4], as it succeeds fast detection.
Shape- or model-based approaches represent salient facial
features via a model and its parameters are optimized to fit
to the observations. Earlier examples included deformable
templates, graph matching, active contours, Hough trans-
formation, e.g. [5], as well as Active appearance models
(AAM) [6]. Later, many derivatives based on AAM have
been proposed,e.g. [7] and although they may lead to ac-
curate feature detection results, they may also converge to
incorrect local minima due to improper initializations and
feature variances and with a cost in time. Approaches based
on machine learning techniques, like Principal Components
Analysis, Neural Networks and Adaboost Classifiers,e.g [8]
are relatively robust to illumination differences, but require a
large number of images for training and are computationally



Fig. 1. Block diagram of the proposed system for hands and face tracking.

less efficient in the case of high resolution video sequences.

II. METHODOLOGY

A block diagram of the components that comprise the
proposed approach is depicted in Fig. 1. The first block in
Fig. 1 is the hand and face color-based tracker. The second
step of the proposed system involves the classification of the
resulting tracks into tracks that belong to facial blobs and
tracks that belong to hands; left and right hands are also
classified separately in this step.

Hand trajectories are forwarded to the hand-gesture recog-
nition system (not described in this paper), while facial re-
gions are further analyzed in order to detect and track specific
facial features (eyes, nose and mouth) and to facilitate facial
gestures and expression recognition at a later processing
stage of the system (also not part of this paper).

In the following sections we describe each of the above
mentioned components in detail.

III. HAND AND FACE TRACKING

In this work, hand and face regions are detected as solid
blobs of skin-colored, foreground pixels and they are tracked
over time using the propagated pixel hypotheses algorithm
analyzed in detail in [9]. This specific tracking algorithm
allows the tracked regions to move in complex trajectories,
change their shape, occlude each other in the field of view
of the camera and vary in number over time.

Initially, the foreground area of the image is extracted
by the use of a background subtraction algorithm [10].
Then, foreground pixels are characterized according to their
probability to depict human skin and then grouped together
into solid skin color blobs using hysteresis thresholding and
connected components labeling. The location and the speed
of each blob is modelled as a discrete time, linear dynamical
system which is tracked using the Kalman filter equations.
Information about the spatial distribution of the pixels of
each tracked object (i.e. its shape) is passed on from frame
to frame by propagating a set of pixel hypotheses, uniformly
sampled from the original object’s projection, to the target
frame using the object’s current dynamics, as estimated
by the Kalman filter. The density of the propagated pixel

hypotheses provides the metric which is used in order to
associate observed skin-colored pixels with existing object
tracks in a way that is aware of each object’s shape and the
uncertainty associated with its track.

Figure 2 demonstrate the operation of the employed hand
and face tracker on a test sequence which involves a man
performing hand gestures in an office environment. As can
be easily observed, the tracker succeeds in keeping track
of all the three hypotheses, despite the occlusions and the
blob merging events introduced at various fragments of the
sequence.

(a) (b)

(c) (d)
Fig. 2. Indicative tracking results in four frames of the office image
sequence used in the previous example. In all cases the algorithm succeeds
in correctly tracking the three skin-colored regions.

IV. CLASSIFYING BETWEEN HANDS AND FACES
To proceed with higher level tasks, like hand gestures

and facial expressions recognition, one has to distinguish
between tracks that belong to hands and tracks that belong
to faces. Moreover, for hand tracks, one has to know which
tracks belong to left hands and which tracks belong to right
hands. Towards this goal, we have developed a technique
that incrementally classifies a track into one of three classes:
faces, left hands and right hands.

The input of the technique is a feature vector Ot which
is extracted at each time instant t and is used to update the
belief of the robot Bt regarding the class F of each track.
The feature vector Ot consists of the following components:
• The periphery-to-area ratio rt of the current track’s blob.

The ratio rt is normalized to the corresponding ratio
of a circle and provides a measure of the complexity
of the blob’s contour. It is expected that hands will
generally have more complex contours than faces, i.e.
larger values for rt .

• The vertical and the horizontal components ut and vt of
the speed of a tracked skin-colored blob. The intuition
behind this choice is that hands are generally expected
to move faster than faces and faces are not expected to
have large vertical components in their motion.

• The orientation θt of the blob. It is expected that faces
will tend to have orientations close to π/2.



• The location lt of the blob within the image. This
location is relative to the location of each possible head
hypothesis and it is normalized according to the radius
of this head, as it will be explained later in this section.

We define the belief Bt of the robot at time instant t to
be the probability that the track belongs to class f , given all
observations Oi up to time instant t. That is:

Bt = P(F = f |O1, . . . ,Ot−1,Ot) (1)

=
P(Ot |F = f ,O1, . . . ,Ot−1)P(F = f |O1, . . . ,Ot−1)

P(Ot |O1, . . . ,Ot−1)
(2)

Since the denominator P(On|O1, . . . ,Ot−1) is independent
of F , we can substitute it with 1/α and we obtain

Bt = αP(On|F = f ,O1, . . . ,Ot−1)P(F = f |O1, . . . ,Ot−1)
(3)

= αP(On|F = f ,O1, . . . ,Ot−1)Bt−1 (4)

The above equation defines an incremental way to com-
pute Bt , i.e. to classify the track by incrementally improving
the belief Bt based on the previous belief Bt−1 and the current
observations.

By assuming the Markov property and the independence
assumptions indicated by Figure 3, the computation of Bt
can be simplified as:

Bt = αP(Ot |F = f )Bt−1 (5)

In order to compute the term P(Ot |F = f ) in the right
hand of (5), we assume the naive Bayes classifier depicted
in the graph of Fig. 3 (b).

(a) (b)
Fig. 3. (a) Bayes graph encoding the independence assumptions of our
approach, (b) The naive Bayes classifier used to compute the P(Ot |F = f ).

According to this graph, we have at time instant t:

P(Ot |F) =
P(F,Ot)

P(F)
(6)

= P(rt |F)P(ut |F)P(vt |F)P(θt |F)P(lt |F) (7)

All the probabilities in the right side of (7) can be
estimated according to training data. Hence they are encoded
and stored in appropriate look-up tables, thus permitting real-
time computations.

The lookup tables for P(rt |F), P(ut |F), P(vt |F) and
P(θt |F) are depicted in Fig. 4. They are 1D lookup tables
encoding the relevant quantity (r, u, v, or θ ) with the
probability of appearance of this quantity in the training set.
These lookup tables are identical for left hands and right

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 4. 1D Look-up tables used for the computation of Equation (7). (a):
P(rt |F = f ace), (b): P(ut |F = f ace), (c): P(vt |F = f ace), (d): P(θt |F =
f ace), (e): P(rt |F = hand), (f): P(ut |F = hand), (g): P(vt |F = hand), (h):
P(θt |F = hand).

hands but they are different in the case of faces. This is
because, the relevant quantities are not expected to vary
significantly between left and right hands but, as can be
easily observed in Fig. 4, they differ significantly in the case
of faces.

P(lt |F), which is the probability of a blob being observed
at location lt given its class F , is computed and stored
differently for faces and differently for hands.

For faces, P(lt | f ace) is retrieved as the probability for a
facial blob to be centered at this specific image location lt .
Obviously, the 2D lookup table for P(lt | f ace) depends on the
actual application at hand and involves assumptions about the
pose of the camera and the relative location of the human(s)
with respect to the camera. In our case, which involves a
human-robot interaction application, we assumed a camera
placement such that the field of view of the camera includes
the upper body part of one or more humans standing at a
convenient distance between 0.5m and 2m in front of the
robot. The actual lookup table that we compiled and used in
our experiments is depicted in Fig. 5(a).

(a) (b) (c)

Fig. 5. 2D Look-up tables used for the computation of P(lt |F) in
Equation (7). (a) for faces, (b) for left hands, (c) for right hands.

For hands, P(lt |le f t hand) and P(lt |right hand) are com-
puted relatively to the location of the corresponding person’s
face. Since we don’t know which is the corresponding per-
son’s face, we marginalize over all possible face hypotheses.

That is, for P(lt |right hand) we have:

P(lt |right hand) = ∑
h

P(lt |right hand,h = f ace)P(h = f ace)

(8)



and similarly for the left hand:

P(lt |le f t hand) = ∑
h

P(lt |le f t hand,h = f ace)P(h = f ace)

(9)
Figures 5(b) and 5(c) depict the resulting lookup tables

for P(lt |right hand,h = f ace) and P(lt |le f t hand,h = f ace).
Evidently, the discriminative power of each of the above

described features is significantly related to the application
scenario at hand. That is, different training data should be
used for different applications, which is especially true for
the speed components ut and vt and for the expected image
location lt of hand and facial blobs. In all experiments
reported in this paper we have trained our classifier assuming
a human-robot interaction setup which involves human(s)
standing at a distance of approximately 1m from a camera
which is placed at approximately 1.2 meters above the
ground (i.e. the robots chest).

V. DETECTION AND TRACKING OF FACIAL
FEATURES

For tracking individual facial features within each detected
facial blob, we utilize a hybrid approach by integrating an
appearance-based detector and a feature-based tracker for
the eyes, the nose and the mouth. The combined approach
inherits advantages from both approaches permitting robust
identification of the facial features, correct maintenance of
feature IDs among frames, as well as real-time computations.

The overview of the implemented approach is illustrated
in Fig. 6 and is based on three steps.

Fig. 6. Diagram of the proposed approach for detection and tracking of
facial features.

For the initial detection of facial features we use the
Boosted Cascade Detector of Viola and Jones [11] and the
available implementation in the OpenCV open source library.
In our case, for the detection of the features within each face
blob, individual sets of Haar-like features for eyes, nose and
mouth are utilized and the method is initialized with frontal-
view faces.

An important factor which affects both the reliability of
detection and the tracking accuracy of facial features is the
size of the detected face blob. According to Tian [12], facial
features become hard to detect when the face region is
smaller than a threshold of approximately 70× 90 pixels.

Therefore, the procedure of facial feature detection and
tracking is only activated when the face blob satisfies the
above size requirements.

After all features have been detected, specific anthropo-
metric constraints are applied in order to cast out false posi-
tives. Motivated by the work of Sohail and Bhattacharya [13],
we have collected a large set of measurements from images
depicting faces in frontal view. The collected measurements
were used to built an anthropometric model of the human
face and to define the necessary thresholds and validation
gates used to filter out false positive detections. The selected
validation criteria involve the location and the size of the
eyes, the nose and the mouth. Landmarks on other regions
such as the eyebrows, used, for example, in [13], were not
selected because they often proved to be occluded by hair,
eyeglasses or, in some cases, they were entirely non-existent.

More specifically, we define the following criteria:
• All four selected features (eyes, nose, mouth) should be

detected.
• The normalized sizes of the two eyes and mouth should

be within certain bounds.
• The normalized distance between the midpoint of the

eye centers and nose tip should be approximately 0.6.
That is D2/D1 ' 0.6, where D2 is the distance between
points P3 and P4 (see Fig. 7).

• The normalized distance between the midpoint of eye
centers and mouth center should be approximately '
1.2. That is D3/D1 ' 1.2, where D3 is the distance
between points (P3 and P5).

The above defined criteria are applied for each facial blob,
following the detection of facial features.

For blobs that pass the above criteria, the tracking pro-
cedure is invoked. It is to be noted that tracking is only
performed for the two eyes and for the mouth region. The
nose region is not tracked because it’s actual location is
not considered important for our target application, which
is expression recognition and visual speech detection.

Tracking is based on template matching, using as eye
and mouth templates the detected areas from each face
using the normalized cross-correlation (NCC) measure as
matching score/quality measure. The selection of NCC as
quality measure is justified as only small deviations in the
relative positions of the feature areas with respect to the
position of the face blob in the image are expected. The
position with the maximum similarity score within each
search area for eyes and mouth is selected as the new feature

Fig. 7. Landmarks in the Anthropometric Face Model.



position and the size of templates is updated with a factor
in every consecutive frame. The width and height factor are
computed by the ratios of the template width and height to
the respective face width and height. The matching score is
used to block results of low reliability and if it is below a
certain threshold, detection is reinvoked. With this approach
there is a significant gain in processing time, allowing for
real-time computations. For example for the case of images
with size 640x480 pixels and a face of approximate size
of 200 x 200 pixels, detection of each feature area is
approximately at 200 - 400 ms whereas tracking is below
10 ms using a standard computer.

VI. EXPERIMENTAL RESULTS WITH REAL
WORLD DATA

Figure 8 depicts results from a sequence with multi-
ple persons. The number of persons varies with time and
there are many occlusions which cause frequent disappear-
ances/reappearances of both hand and face blobs. Despite
these difficulties, the tracking algorithm succeeds to correctly
identify all visible faces and hands. In Fig. 9 results are
shown from the same sequence with emphasis on facial
feature localization within the provided face blobs, in cases
of multiple persons performing different facial expressions
and head gestures.

(a) (b)

(c) (d)
Fig. 8. Four frames of a sequence depicting multiple persons performing
hand and facial gestures in an office environment. Throughout the sequence
performers enter and leave the scene and there are frequent occlusions,
which result in a varying number of hand and face hypotheses.

Figure 10 presents hand and face classification results
for various frames of the office sequence of Fig. 2. Blobs
classified as faces are marked with an “F”, left hands are
marked with an “L”, and right hands are marked with an “R”.
The proposed approach has been successful in classifying
the three observed tracks and it also managed to maintain its
belief over the whole sequence. To quantitatively assess the
tracker’s performance with respect to class discrimination
and robust tracking over time, Fig. 11 depicts the belief
of each of the three tracks of the office sequence, as it
evolves over the first 500 frames of this sequence. As
can be easily observed, the belief of each track is initially

(a) (b)

(c) (d)
Fig. 9. Four frames of a sequence depicting multiple persons performing
hand and facial gestures in an office environment, focusing on the tracking
of facial features. Throughout the sequence performers enter and leave the
scene, and perform gestures in various distances from the camera.

(a) (b)

(c) (d)
Fig. 10. Four frames of a sequence depicting a person performing various
hand gestures in an office environment.

uncertain but very soon it stabilizes to the correct class. The
belief stays stable to the correct classes thoughout the whole
sequence consisting of a total of 2600 frames (for clarity of
presentation, only the first 500 frames are shown in these
graphs).

Figure 12 depicts some facial feature tracking results
from two additional, close-up, sequences captured in an
exhibition center. The first sequence comprised of a total
number of 1100 image frames, whereas the second sequence
of 650 image frames. In all our experiments the algorithm
successfully tracked the skin-colored blobs corresponding to
faces, following convergence curves which were very similar
to the ones depicted in Fig. 11. Eyes, nose and mouth
regions were also correctly localized and tracked, even in
cases of usual off-plane head rotations and different facial
expressions. Table I shows quantitative results, verified by a
human supervisor, of the two sequences of Fig. 12. The high
true positive (TP) percentages for each facial region indicate
successful localization when the respective region is visible.



Fig. 11. The belief of each of the three tracks of the office sequence, as it evolves over the first 500 frames. The solid blue lines correspond to the
probability of each blob being a face blob, the dot-dashed green lines correspond to left hands and the dashed red lines corresponds to right hands.

(a) (b) (c)

(d) (e) (f)
Fig. 12. Frames of different sequences captured in an exhibition center
that show results from facial feature tracking of a person.

The false negative (FN) percentages are generally low with
the exception for the right eye of sequence 2 due to lower
signal content in this area.

TABLE I
PERCENTAGES OF TRUE POSITIVE (TP), TRUE NEGATIVE (TN), FALSE

POSSITIVE (FP) AND FALSE NEGATIVE (FN) RESULTS FOR THE TWO

SEQUENCES OF FIG. 12.

TP (%) TN (%) FP (%) FN (%)
Sequence 1
Mouth 95.09 0 0.22 4.69
Left Eye 95.98 0 0 4.02
Right Eye 93.30 2 0.22 4.64
Sequence 2
Mouth 93.31 0 1.18 5.51
Left Eye 94.49 4 0 3.94
Right Eye 85.83 6 0 11.81

More experimental results from different application
environments (office, exhibition center) can be
found in http://www.ics.forth.gr/˜pateraki/
handfacetracking.html.

VII. CONCLUSIONS
In this paper we have presented an integrated approach for

tracking of hands, faces and facial features of multiple persons
in image sequences, intended to support natural interaction with
autonomously navigating robots in public spaces and, more specif-
ically, to provide input for the analysis of hand gestures and
facial expressions that humans utilize while engaged in various
conversational states with the robot.

For hand and face tracking, the skin-color tracker was extended
by incorporating an incremental probabilistic classifier which was
used to maintain and continuously update the belief about the
class of each tracked blob which can be a left-hand, a right hand

or a face. Facial feature detection and tracking was performed
via the employment of state-of-the-art appearance-based detection
coupled with feature-based tracking, using a set of anthropometric
constraints.

Experimental results have confirmed the effectiveness of the
proposed approach proving that the individual advantages of all
involved components are maintained, leading to implementations
that combine accuracy, efficiency and robustness.

Besides using the proposed methodology to give input for
the analysis of hand gestures and facial expressions, it possesses
characteristics that constitute it suitable for more general activity
recognition tasks and tasks related to robot learning by demon-
stration. Future work will involve relevant investigations in the
mentioned areas.
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