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Abstract— Articulated human body tracking is one of the
most thoroughly examined, yet still challenging, tasks in Human
Robot Interaction. The emergence of low-cost real-time depth
cameras has greatly pushed forward the state of the art in the
field. Nevertheless, the overall performance in complex, real
life scenarios is an open-ended problem, mainly due to the
high-dimensionality of the problem, the common presence of
severe occlusions in the observed scene data, and errors in the
segmentation and pose initialization processes.

In this paper we propose a novel model-based approach
for markerless pose detection and tracking of the articulated
upper body of multiple users in RGB-D sequences. The main
contribution of our work lies in the introduction and further
development of a virtual User Top View, a hypothesized view
aligned to the main torso axis of each user, to robustly estimate
the 3D torso pose even under severe intra- and inter-personal
occlusions, exempting at the same time the requirement of
arbitrary initialization. The extracted 3D torso pose, along with
a human arm kinematic model, gives rise to the generation of
arms hypotheses, tracked via Particle Filters, and for which
ordered rendering is used to detect possible occlusions and
collisions.

Experimental results in realistic scenarios, as well as compar-
ative tests against the NiTETM user generator middleware using
ground truth data, validate the effectiveness of the proposed
method.

I. INTRODUCTION

Markerless articulated body tracking constitutes a chal-
lenging and highly important task in Robotic Vision, tar-
geting a variety of applications. The latter include complex
Human Robot Interaction (HRI) tasks [1], such as user
interaction with robotic guides or service robots [2], and
application scenarios in relevant sectors, such as gaming
and augmented reality. Recently, the introduction of low-
cost real-time depth (RGB-D) cameras, such as the KinectTM

sensor [3], has significantly facilitated the task at hand,
giving rise to fast and accurate pose recovery approaches
and, thus, pushing forward the state-of-the-art (e.g. [4], [5],
[6]). Nevertheless, and despite the fact that the majority
of the recently developed approaches are quite effective in
controlled or semi-controlled environments, in more complex
cases, involving multiple users moving and (inter-)acting
arbitrarily, performance may be limited.

In a large number of body pose tracking methodologies,
there is the inherent requirement of an initialization phase.
This can be done either explicitly, by having the user stand
at a specific pose (e.g. T-pose), or implicitly, requiring a
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certain amount of frames to register the user. However, in
real life scenarios where users move, act and interact freely,
an initialization phase is not always possible. In such cases of
naturalistic interactions, the problem of frequently occurring
intra- and inter-person occlusions, namely occlusions im-
posed across body parts of the same user or across different
users, respectively, may additionally deteriorate performance.
In fact, estimating the human pose when a person is partially
or heavily occluded in the scene remains challenging and is
of utmost importance in real-world applications [7].

In this work, we present a novel markerless articulated
upper body tracking methodology, able to overcome key lim-
itations imposed in complex, free-form interaction scenarios.
We mainly focus in cases where multiple users enter, exit
or move freely across the scene and independently act and
interact. Within this context, we are interested in estimating
the upper body configuration, including torso and arms,
under the assumption that no initialization phase is possible
and that the pose recovery and tracking should remain
unaffected from partial intra- and inter-person occlusions.

The employed upper body model consists of five parts;
the torso and the two (left-right) upper and forearms [8].
The torso is considered as a rigid body with 6 Degrees
of Freedom, represented by an elliptic cylinder, while the
arms are modeled using a kinematic model similar to the
one presented in [9]; the arm parts (upper and forearm) are
both represented as cylinders.

A brief overview of the developed methodology is in
order. Initially, we detect users by classifying skin-colored
blobs into faces and palms. Based on the detected face
locations, we perform ordered-based segmentation of each
user from the rest of the scene. Next, each user is evaluated
according to the depth ordering, against other users in front
of him, for possible occlusions. We then estimate the User
Top View (UTV), a hypothesized view aligned to the main
axis of a users torso, based on the minimum projection
ratio criterion. UTV is used to determine the torso pose
and, effectively, the location of the two shoulders. Shoulder
locations, in conjunction with the detected palms and a
set of anthropometric proportions, are used to generate a
set of configuration hypotheses for each arm, tracked by
a separate particle filter. Ray tracing is used to render
each of the body parts (particles) and to detect and handle
occlusions or collisions with prior evaluated users and parts.
Possible detected occlusions and collisions are further used,
together with the kinematic model workspace, to constraint
the hypotheses space. Finally, a hypothesized depth map is
generated for each arm configuration, which is compared
against the observed one in order to evaluate each hypothesis,



Fig. 1. Schematic overview of the proposed methodology.

resulting to a full upper body pose estimation.
To evaluate our approach we performed extensive ex-

periments using realistic interaction scenarios in different
environments, with varying number of users. We further
compared our method against the NiTETM [6], [10] skele-
tonization tool, using ground truth derived from marker-
based sequences. Both qualitative and quantitative results are
presented that attest on the effectiveness and performance of
the proposed methodology.

Related work

State-of-the-art body pose estimation and tracking ap-
proaches are thoroughly reviewed in [11], [12], [13], while
the emergence of real-time depth sensors has stimulated new
research [7]. The most widely used approach is the learning-
based approach of Shotton [5] used by Microsoft in its Kinect
for Windows SDK. The method utilizes Random Forests,
which are employed in order to perform a per pixel body
part classification, using a large synthetic training dataset
containing various body configurations. Extensions of this
work [14], [15] have managed to enhance the initial machine
learning method by providing faster and more accurate
results. The OpenNI framework [6] also includes a body pose
algorithm in its NiTE [10] middleware. To the best of our
knowledge, the NiTE algorithm has not been published, but
its functionality and performance approach the ones of the
algorithm of Shotton [5].

Similarly to the above, Ye et al. [16] and Shen et
al. [17] claim to provide accurate pose estimation in cases
where occlusions are present. The authors in [16] utilise
the coherent drift point (CDP) algorithm to solve non-rigid
point registration; in [17] the authors use an exemplar-based
method to learn an inhomogeneous systematic bias for body
pose correction and tagging. Hernandez et al. [18] use Graph
Cuts optimization to classify pixels to seven body parts,
while Baak et al. [19] follow a data-driven hybrid strategy,
combining local optimization and global retrieval techniques.
In the same context, Probabilistic Graphical Models [20] as
well as hybrid approaches, such as Connected Poselets [21],
have also been used to infer the body pose.

Grest et al. [22] use Iterative Closest Point to extract

and track the skeleton while Zhu and Fujimura [23] build
heuristic detectors to locate upper body parts (head, torso,
arms). Similarly to the latter, Jain et al. [24] locate the
upper body by sliding template matching and use distance
transform analysis to infer the pose of the arms. Moreover,
in [25], vertices are classified and segmented into different
body parts, while, Plagemann et al. [26] build a 3D mesh in
order to form geodesic maps for the detection of the head,
hand and foot.

Evidently, a large body of research deals with the problem
of articulated body pose extraction and tracking. However,
limiting factors are still present, especially when dealing
with complex, realistic interaction scenarios. One such lim-
itation regards the inherent requirement for an initialization
period, either explicitly, demanding a specific predefined
pose [22], [23] or implicitly, by registering and tracking the
user over a time-window [5], [10]. Moreover, learning-based
approaches, as [5], [10], are characterized by the absence of
a kinematics coherence in the provided poses. Even more
importantly, a serious drawback of most of the state-of-the-
art approaches is the limited ability to cope with instances of
severe occlusions, and hence the inferior performance in such
cases. Although some works have attempted to address self-
imposed occlusions [16], coping with inter-person occlusions
remains problematic [12].

Contributions

In this paper, we address the above-mentioned shortcom-
ings and propose a methodology for robustly and accurately
inferring the upper body pose of multiple users, which
move, act and interact freely in naturalistic scenarios. Our
main contribution is the introduction and development of the
User Top View (UTV) as a robust indicator of the 3D body
pose. Additionally, ordered rendering of each user together
with the employed kinematic arm model, facilitate robust
and effective handling of collisions and occlusions across
different parts and/or different users.

II. METHODOLOGY

A schematic overview of the proposed methodology is
depicted in Fig. 1. Once users are detected and segmented



from the scene, the depth of each face centroid is utilized
to determine the ordering of user evaluation, and provide
an initial estimation about existing occlusions. Then, the 3D
configuration of the torso is derived from the estimated UTV,
which further steers estimation of the shoulder joints. Given
the location of shoulders and the corresponding detected
palms, we generate a set of arm-hypotheses according to the
employed kinematic model. Each arm hypothesis is rendered
and checked against possible occlusions and collisions. Fi-
nally, the generated depth map is compared to the observed
depth map and used to evaluate each hypothesis. Overall,
the proposed methodology involves four steps, which are
executed iteratively while tracking multiple users:

• Agent segmentation and ordering. Based on face and
palm detection, users are detected, ordered, segmented
from the scene and checked for possible occlusions.
Each user is subsequently processed according to the
resulting depth order.

• Torso pose estimation. UTV is used to estimate the
torso configuration for each user. 2D ellipse approxi-
mation, on the hypothesized view projections, is used
to derive the orientation of the torso’s main axis and
also locate the shoulder joints.

• Arm hypotheses generation. Given the shoulder po-
sitions and the detected user palms, a set of arm
hypotheses is generated, constrained by the kinematic
model.

• User rendering and hypothesis evaluation. Ray cast-
ing is used to render the body parts, and further con-
straint the arm hypotheses. For each configuration, a
depth map is generated, which is compared in turn
against the actual depth map in order to evaluate the
hypothesis.

Throughout the process, specific quantitative parameters
regarding the human-body are used, namely the torso size
and the lengths of each arm part (upper and forearm).
Since an initialization phase isn’t available, we rely on
established adult anthropometric proportions [27], [28] to
set these parameters relative to the human-body height; the
latter is readily available as a by-product of detected 3D face
position.

A. Agent segmentation and ordering

The first step of our methodology involves the detection
and segmentation of the users, as well as ordering them
w.r.t. their depth. To detect users, we rely on face and
palm classification based on human skin color tracking, as
described in [29]. The 3D face location, besides facilitating
user detection, has a twofold use. As mentioned above,
it gives rise to an approximation of the anthropometric
parameters (lengths) of the model. Moreover, it is readily
exploited to obtain an ordering of the users according to
their distance (depth) from the camera.

User segmentation is performed via a standard connected
components algorithm operating onto the depth channel, thus
providing the corresponding point cloud. The segmented area
of each user is tracked using the associated bounding box,

(a) (b)

Fig. 2. (a) Bounding box of the segmented area. (b) Overlapping area
bounding boxes as an indicator for possible occlusion.

Fig. 3. Virtual camera moving on a semi-sphere. For each view, the cor-
responding re-projection is depicted. The hypothesized view that minimizes
the projection ratio criterion, is considered to be the UTV.

as shown by the green rectangle in Fig. 2(a). Whenever
two, or more, bounding boxes collide (overlapping one
another or being adjacent) it is assumed as an indicator for
possible intra-person occlusion (red outline in Fig. 2(b)). This
information is further utilized in the following steps.

B. Torso pose estimation

Given the location of the face and the corresponding
segmented point cloud of each user, we subsequently obtain
a top-view re-projection of the point cloud. The sought
virtual top-view camera, termed User Top View (UTV), has
its optical axis aligned to the user’s torso axis and its
formulation constitutes a main contribution of this work.
Based on the estimated UTV, we select the 3D points of
the torso area which, in turn, are used to derive the 3D pose
of the torso.

To achieve this, we assume a virtual camera allowed to
move on a semi-sphere above the user, as depicted in Fig. 3;
the optical axis of the virtual camera remains normal to the
semi-sphere surface for all assumed camera positions. For
each such position, we select points belonging to the hypoth-
esized torso and re-project them on the virtual image plane.
In order to delineate the area that contains the torso points,
we represent the user-torso as an elliptic cylinder, the size of
which is determined by the anthropometric measurements. In
Fig. 4(a), the torso representation is illustrated, along with
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Fig. 4. (a) Elliptic cylinder model for the torso. (b) Circular cylinder casting
to select points and compute the ratio criterion. Yellow points represent the
point lying inside the cylinder, namely the Parea.

the orientations about the x, y and z axis, denoted as pitch,
yaw and roll, respectively. However, since the orientation
about the torso axis, namely the yaw, is unknown, we relax
this parameter and initially compute only the pitch and
roll angles, by selecting points which lie inside a circular
cylinder, the axis of which is aligned to the virtual camera’s
optical axis, as illustrated in Fig. 4(b).

To evaluate the virtual views, for each top-view re-
projection of a user’s body, we employ the projection ratio
criterion given as:

Pratio =
Pproj ∗ Pcyl

P 2
area

(1)

where Pcyl is the surface area of the hypothesized cylinder,
Parea is the total number of 3D points inside the cylinder
and Pproj is the number of point projections on the image
plane. In other words, assuming that the torso is the biggest
part of a human body, (1) demands for the minimum number
of point projections and the maximum body area (3D points)
coverage simultaneously.

Evidently, the virtual view with the minimum Pratio is the
one obtained when the virtual camera on top of the user has
its optical axis coinciding with the main axis of the human
torso (see Fig. 3). This plausible and intuitive assumption has
also been experimentally verified in our work; we conducted
a series of experiments involving users that assumed various
body configurations. In all cases, ground truth data was
available, using markers attached to the users. Given the torso
orientation (provided by the markers), the virtual camera
assumed many densely-placed locations on a semi-sphere on
top of the user and with axis of symmetry the main torso
axis. For all such camera-configurations the re-projection
of the point cloud onto the camera image plane has been
estimated. Fig. 5 shows the Pratio in comparison against
ground truth data, averaging over all experiments. Assuming
that ground truth lies at (0, 0), where the “roll angle” and

Fig. 5. Plot demonstrating the value of Pratio for various views. Each axis
represents difference between the ground truth and the estimated virtual view
orientation. Pratio becomes minimum when it coincides with the ground
truth.

“pitch angle” axes depict the difference between the hypoth-
esis and the corresponding ground truth orientation, we can
observe that the projection ratio drops as the hypothesized
view approaches UTV, and becomes minimum at UTV.

Occlusion handling: During agent segmentation, in II-
A, we determined whether there exist possible occlusions
across users. If this is the case for the currently examined
user, the above presented ratios are adjusted according to
the percentage of occlusion Poccl of the virtual cylinder. For
the calculation of Poccl, the hypothesized circular cylinder
is projected onto the image plane of the actual camera.
Projected points that lie inside the bounding boxes of the
users “in front” of the currently examined one, are deemed as
occluded points of the user and contribute to the calculation
of Poccl; the latter is the ratio of occluded points over the total
number of cylinder projected points. In turn, Pratio becomes

Pratio = (1− Poccl) ∗
Pproj ∗ Pcyl

P 2
area

(2)

Poccl can be considered as a normalization factor, aiming
to compensate for the ratio changes caused by the occlusions.
By adjusting the projection ratio criterion, we favor occluded
hypotheses which would satisfy the initial projection ratio
criterion (1), if they weren’t occluded. Effectively, the nor-
malized projection criterion guarantees high detection rates
and accuracy even in cases of severe occlusions.

UTV refinement: The above provides a universal and
readily implementable criterion for estimating UTV. In prac-
tice though, since the torso axis is not available, the semi-
sphere for placing the virtual camera can not be accurately
defined. In our implementation we overcome this by using
the centroid of the (already available) user’s face and placing
the semi-sphere accordingly. The latter may introduce small
errors in the estimation of UTV, mostly due to varying head
positions and orientations, affecting the center of the camera
pivot.

To cope with this we employ a UTV-refinement step. More
specifically, we consider a small neighbourhood, around the
computed UTV, that is deemed to contain the actual UTV.



TABLE I
DENAVIT-HARTENBERG PARAMETERS FOR THE 4-DOF MODEL OF THE

HUMAN ARM EMPLOYED IN OUR APPROACH.

i θi αi ai di range
1 θ1 −90◦ 0 0 −90◦ . . . 90◦
2 θ2 − 90◦ −90◦ 0 0 −90◦ . . . 90◦
3 θ3 + 90◦ +90◦ 0 lu −230◦ . . . 90◦
4 θ4 −90◦ 0 0 0◦ . . . 145◦

5 θ5 = 0 +90◦ 0 lf 0◦ . . . 350◦

However, the virtual camera pivot is an approximation of
the neck centroid instead of the that of the face. The neck is
approximated by examining narrow slices along the virtual
camera axis. For each of the resulting virtual cameras, Pratio

is recalculated and, thus, UTV estimation is refined.
Yaw calculation: Based on the derived UTV, torso ori-

entation is readily available as the orientation assumed by
the UTV-axis. More specifically, the UTV-axis defines the
two degrees-of-freedom for the torso orientation. The third
degree-of-freedom, namely torso rotation around the UTV-
axis, is obtained by fitting a 2D ellipse on the torso points
re-projected on UTV with center the previously approximated
neck. Due to the nature of data, typical ellipse surface
fitting would provide poor results in cases of occlusions and
significant torso rotation angle. Instead, we fit a line on the
re-projected points, and demand for the ellipse major axis to
be parallel to that line. By doing so, torso orientation remains
unaffected from arbitrary movements and/or the presence of
occlusions. The two ellipse extrema are, finally, considered
as the locations of the corresponding user shoulders.

C. Arm hypotheses generation

Each arm is modeled using the 4-DoF kinematic model
shown in Fig. 6(a), similar to the one presented in [9], and
described by the Denavit-Hartenberg parameters shown in
Table II-C. Angles θ1, θ2, θ3 refer to the 3 DoFs of the
shoulder joint, while angle θ4 refers to the DoF of the elbow
joint. lu and lf refer to the lengths of the upper and forearm,
respectively. Since we are not interested in the orientation of
the palm, we practically discard the fifth angle by setting
θ5 = 0.

Typically, given the location of the shoulder and palm,
one has to solve the inverse kinematic equations in order to
come up with the possible positions of the elbow. However,
this involves performing a series of expensive calculations,
which, in our case, could be prohibiting for real time
execution.

Instead we use a two-way mapping between arm config-
uration and spherical coordinates, as depicted in Fig. 6(b).
Given a shoulder joint, the elbow is allowed to move freely
along the surface of a sphere (more accurately, along a part of
the sphere surface, constrained by the kinematic workspace)
with center the shoulder itself and radius the length of the
upper arm, lu. Equivalently, the palm moves along (part

of) the surface of a sphere with center the elbow location
and radius the length of the forearm, lf . This mapping is
performed offline and facilitates switching rapidly between
the two reference systems, i.e. kinematic (θ1 . . . θ4) and
spherical (ω, φ), without excessive computations.

To cope with possible data noise or errors introduced from
previous computations, the detected shoulders and palms are
represented as 3D gaussian distributions, with mean value
µ the location of the corresponding joint. In the case of
shoulders, the standard deviation σ is the shoulder joint size,
derived from the anthropometric proportions. In the case of
palms, σ is inversely proportional to the confidence of the
skin classifier, according to a predefined scale factor. A visual
representation of the sampling procedure is given in Fig. 6(c).

In order to generate arm hypotheses we sample from the
corresponding distributions, to end up with a hypothetical
shoulder-palm pair. Given the 3D location of the shoulder ~S
and the palm ~P , the elbow is constrained to lie on a 3D circle
around the ~SP vector with center ~C (red disc in Fig. 6(c)),
given by:

~C = ~S +
i

l
( ~SP ) (3)

where

i =
l2 + lu

2 − lf 2

2l
(4)

l = ‖ ~SP‖, lu is the upper arm length and lf the forearm
length. Given two unit vectors, ~v1 and ~v2, perpendicular to
~SP and to each other, we estimate possible elbow positions
~Ek as:

~Ek = ~C + r(~v1 cos(θk) + ~v2 sin(θk)) (5)

where r =
√
lu

2 − i2 is the circle radius and θk is the angle
about the ~SP , constrained by the kinematic model.

The above arm hypothesis sampling procedure is illus-
trated in Fig. 6(b). Shoulder and palm pairs are sampled
from the corresponding distributions, illustrated as spheres.
For each pair, a 3D circle (depicted by red color) about
the shoulder-palm axis defines the elbow legal locations.
In total, the elbow workspace forms a doughnut-like area,
constrained by the kinematic model, from which samples
are drawn uniformly, to produce the arm hypotheses set. For
each arm, the corresponding hypotheses are tracked over time
by means of a separate particle filter, ensuring temporal and
spatial consistency.

D. User rendering and hypothesis evaluation

Each particle is in turn rendered in order to generate a
hypothetical depth map, which, compared to the observed
depth map, is used to evaluate the hypothesis. Arm rendering
follows the user depth ordering, discussed in II-A. This
means that the body parts of already examined users (users
“in front” of the current one) are already rendered in the
scene. Therefore, each arm hypothesis is also checked against
occlusions and collisions with existing parts, of the same or
different users.

Body parts rendering is done using ray tracing and the
projective geometry of quadrics as described in [30]. Briefly,
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Fig. 6. (a) Kinematic model of the arm. (b) Mapping between kinematic angles and spherical coordinates. (c) Shoulder-Palm pair sampling. Shoulders
and palms are drawn from normal distributions. The elbow distribution have a torus-like shape, from which we draw samples uniformly.

we model the torso as an elliptical cylinder and the arm parts
(upper and forearm) as circular cylinders. Cylinders, here
aligned with the y-axis, can be represented in homogeneous
coordinates as a symmetric 4× 4 matrix Q:

Q =


1
a2 0 0 0
0 0 0 0
0 0 1

b2 0
0 0 0 −1

 (6)

where a and b are the semi-major and semi-minor axes,
respectively. In case of circular cylinders (e.g. arms) a = b.
Their surface is defined by the points X which satisfy the
equation:

XTQX = 0 (7)

Additionally, a pair of planes π0, π1, parallel to the xz-
plane can be described by

Qπ =


0 0 0 0

0 1 0 − (y0+y1)
2

0 0 0 0

0 − (y0+y1)
2 0 y0y1

 (8)

In order to render the hypothesized scene, we cast a ray
for each image pixel and find its intersections -if any- with
the existing quadrics. The camera center 0 and a point x in
image coordinates, define a ray X(t) = [x, t]T in 3D space,
calculated using the camera intrinsic parameters. The point
of intersection of the ray with the quadric can be found by
substituting X by X(t) in (7)

X(t)TQX(t) = 0 (9)

and solving for t. In case the ray intersects the quadric, (9)
has two solutions, while in case the ray is tangent to the
quadric (9) has a unique solution. Apparently, if the ray and
the quadric do not intersect, (9) does not have a real solution.
In case of a truncated quadric (matrix Q describes an infinite
cylinder), the following condition should hold true:

X(t)TQπX(t) ≥ 0 (10)

so that the ray intersects the quadric within its boundaries. If
a ray intersects earlier another body part, the corresponding
point is considered occluded, whereas, if the ray-quadric

intersection happens within another rendered quadric, the
current body part is considered as collided. The percentage of
per body-part occluded and collided points is used to further
constrain the hypotheses set, by eliminating parts with high
occlusion and collision ratios, respectively.

For each rendered hypothesis, the corresponding depth
map is generated and compared against the observed one.
The discrepancy between the hypothetical and observed
depth maps is used as the metric to evaluate the particle.
A predefined number of particles with the best score (i.e.
minimum depth discrepancy) are propagated to the next
frame where the sampling procedure is repeated. By tracking
multiple hypotheses simultaneously we achieve a twofold
result, that is (a) cope with noise and loss of data and (b)
deal effectively with inter- and intra-person occlusions.

III. RESULTS

In order to assess the performance of the proposed method-
ology, we conducted a series of experiments of varying
difficulty level. The experiments took place in various areas
of an indoor environment and involved single or multiple
persons, moving, acting and interacting freely in the scene.
For evaluation purposes the experiments were organized in
two categories. The first category concerns interaction sce-
narios with one or two users and the employment of marker-
based ground truth data for obtaining quantitative results.
The second category refers to experiments for providing
illustrative results in test cases involving up to three users.

Quantitative results: Six interaction sequences, containing
a total of more than 3000 frames, have been acquired and
processed in order to quantitatively assess our methodology.
As explained above, marker-based ground truth data have
been used for the task at hand. In three out of the six
sequences a single user is present, while in the other three,
two users are present to facilitate occlusions among them.
In the experiments with two users, one person assumed a
“dummy role”, that is to partially occlude the second person.
The latter was the subject that was tracked and further
utilized to obtain quantitative assessment figures.

In order to obtain ground truth data, prominent color
markers have been attached on both sides of a user, and
a two-camera setup has been employed to cope with cases
of severe occlusions. More specifically, the setup consisted
of two KinectTM sensors, one facing the interacting users



and the other being placed behind them. Interference among
the two sensors is avoided by having the second (rear)
camera at a certain height, overlooking the scene. With this
configuration, either the front- or the back-side markers are
visible at all times. Example snapshots with one or two users
are illustrated in Fig. 7, where both (frontal and rear) views
are shown, together with the estimated 3D upper body pose.
As explained above, in the rightmost example the tracking
result illustrates only the occluded user.

For the actual quantitative assessment, each sequence
has been processed by our methodology and the NiTETM

skeletonization module. The pose estimation, by means of
joint-angles, provided by each method has been compared
against the derived ground truth. Table II provides the
obtained statistics, namely the mean angular error (averaged
difference between the actual and the estimated angle) µE
and its standard deviation σE. In order to better highlight the
performance of the proposed methodology in the presence
of occlusions, results in Table II are divided in two parts:
(a) overall results for the six sequences, and (b) results for
specific parts of the sequences, where inter-person occlusions
are present. The latter have been manually detected and serve
as the means to illustrate the effectiveness of UTV-based
pose estimation in such cases. As can be observed, overall
our methodology compares favourably to NiTETM both in
µE and σE. More importantly, results in cases of occluded
interacting users demonstrate accurate performance of the
proposed methodology and its superiority over NiTETM.

TABLE II
COMPARATIVE ASSESSMENT RESULTS. µE=MEAN ANGULAR ERROR

THROUGHOUT THE SEQUENCE, σE= STANDARD DEVIATION OF ERROR.

Overall Under
Occlusions

µE σE µE σE

Proposed Methodology 7.40 ◦ 3.70 ◦ 11.39 ◦ 6.48 ◦

NiTETM 8.03 ◦ 4.20 ◦ 14.14 ◦ 7.57 ◦

Qualitative results: Additionally to the experiments that
resulted in quantitative and comparative results, we exten-
sively evaluated our methodology in numerous scenarios
of varying difficulty. Throughout these tests, up to three
users were involved, and in many cases user-occlusions were
present. Illustrative instances from the named experiments
are presented in Fig. 8 (single user case) and Fig. 9 (multiple
users, featuring user-occlusions). In addition to results ob-
tained by our methodology (middle image of each snapshot
in blue background), Fig. 9 illustrates the performance of the
NiTE’s middleware (rightmost image in gray background) in
the presence of occlusions. As can be observed, the proposed
methodology succeeded in effectively tracking the pose of
the upper body in all cases. On the contrary, the performance
of NiTETM deteriorates in cases of occluded users, either by
providing erroneous estimations, as in the case of the left

instance, or by completely losing track of occluded users,
such as the middle user in the case of the right instance.

IV. DISCUSSION

In this paper we presented a robust, model-based method-
ology for human-torso 3D pose extraction. An explicit
initialization/calibration phase is avoided, since it is not
an option in complex, real life HRI scenarios. Moreover,
we achieve pose-recovery in realistic interaction scenarios,
even in the presence of severe occlusions. The latter is our
major advantage compared to the state-of-the art, and is also
supported by the obtained quantitative and qualitative results.
This has been achieved by the introduction and formulation
of UTV, which constitutes a main contribution of our work.

Our planned future work involves an immediate and a
long-term goal. The former regards the extension of our
methodology to cope with full-body pose recovery, including
legs. This is a plausible scenario given that the employed
user-modeling is directly amenable to extensions and/or
additions. The latter addresses the study of more complex
and involved interactions among users, a case that challenges
most contemporary approaches to pose-recovery.
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