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Abstract

Free-form Human Robot Interaction (HRI) in natural-
istic environments remains a challenging computer vision
task. In this context, the extraction of human-body pose in-
formation is of utmost importance. Although the emergence
of real-time depth cameras greatly facilitated this task, is-
sues which limit the performance of existing methods in rel-
evant HRI applications still exist. Applicability of current
state-of-the art approaches is constrained by their inherent
requirement of an initialization phase prior to deriving body
pose information, which in complex, realistic scenarios, is
often hard, if not impossible.

In this work we present a data-driven model-based
method for 3D torso pose estimation from RGB-D image
sequences, eliminating the requirement of an initialization
phase. The detected face of the user steers the initiation
of shoulder areas hypotheses, based on illumination, scale
and pose invariant features on the RGB silhouette. Depth
point cloud information is subsequently utilized to approxi-
mate the shoulder joints and model the human torso based
on a set of 3D geometric primitives and the estimation of the
3D torso pose is derived via a global optimization scheme.
Experimental results in various environments, as well as us-
ing ground truth data and comparing to OpenNI User gen-
erator middleware results, validate the effectiveness of the
proposed method.

1. Introduction
Free-form partial or full human body pose recovery is a

challenging task for a variety of Human Robot Interaction
(HRI) applications, as well as for other application domains
such as security, telepresence, gaming and surveillance. Re-
cently, the introduction of real-time depth cameras (hence-
forth referred as RGB-D cameras), and most importantly
the emergence of the Microsoft KinectTM [5], has greatly
facilitated the pose recovery task.

Contemporary methods that employ RGB-D sensory in-
put have managed to push the state-of-the-art in the re-

covery of human-body pose [10, 24]. This is particularly
true in the case of controlled or semi-controlled environ-
ments. However, when users are allowed to act freely in
natural environments, the performance of human pose re-
covery may be significantly degraded. An example sce-
nario may be that of a service robot (e.g. a robotic salesman
or a robotic bar-tender), with multiple users that move, act
and interact independently in the scene, seeking attention
and possibly service by the robotic agent. In such cases,
torso [20] and/or face pose estimation [8, 18, 21] are iden-
tified as important attentive cues and are further utilized by
fusion modules to initiate interaction with specific user(s).
A specific drawback that many pose recovery approaches
present [19, 20, 4], is the explicit (e.g. specific body pose)
or implicit (e.g. short time of movements) requirement of an
initialization phase in order to register the user and assume
recovery of body pose parameters. This impedes their ap-
plicability in real life scenarios, where initialization is often
hard, if not impossible.

The current work focuses on free-form HRI, with multi-
ple humans arbitrarily entering and leaving the scene, and
independently (inter)acting. In this context, we are inter-
ested in extracting information about the user’s body ori-
entation in 3D, as an indicator for attention seeking, under
the assumption that an initialization phase isn’t possible and
shouldn’t be required to commence interaction.

To cope with the above, we rely on robust face identi-
fication which triggers detection and segmentation of the
human body, assuming that the user roughly looks to the
camera and, therefore, his/her face is visible. Based on il-
lumination, scale and pose invariant features on the RGB
body-silhouette, the shoulder areas are subsequently delin-
eated. Following that, depth point cloud information is fur-
ther utilized to approximate the shoulder joints which, in
turn, are used to model the torso part of the human body.
Shoulder joints are modeled as spheres, while the torso is
modeled as an ellipsoid. While previous works have also
used similar modeling, e.g. Gavrila et al. [9], in the current
work, however, the modeling is steered by features invari-
ant to scale, pose and body type of users, thus less prone

1



to produce outliers. A set of anthropometric quantitative
measures is utilized to evaluate shoulder joint hypothesis,
and initialize and constrain the regression step for the torso
fitting. The latter is performed via a non-linear regression
method that robustly fits an appropriate body model (ellip-
soid) to the corresponding data. The method primarily fo-
cuses on overcoming the requirement of large training data
and initialization constraints. Moreover, the regression step
is performed using a custom iterative algorithm that effec-
tively facilitates real-time operation.

To evaluate our approach we performed extensive exper-
iments using realistic interaction scenarios in different envi-
ronments, with varying number of active users. We further
compared our method with the OpenNI [19] skeleton ex-
traction tool, using ground truth derived from marker-based
sequences. Both qualitative and quantitative results are pre-
sented that illustrate the method’s performance.

The proposed approach is also capable to estimate and
track the pose of the arms. Although not thoroughly devel-
oped in the current paper, initial promising results attest on
its general applicability for upper body pose tracking.

Related Work

Recent approaches in human pose recovery are reviewed
in [6, 17, 23], while the emergence of real-time depth
sensors has stimulated new research. Both discriminative
and generative approaches have been used in contemporary
works, such as Random Forests [10, 12, 24], also combined
with Graph Cuts optimization [12] and Probabilistic Graph-
ical Models [4] as well as hybrid approaches, such as Con-
nected Poselets [13].

Grest et al. [11] use Iterative Closest Point to extract and
track the skeleton while Zhu and Fujimura [28] build heuris-
tic detectors to locate upper body parts (head, torso, arms).
Moreover, in [16], vertices are classified and segmented
into different body parts, while, Plagemann et al. [22] build
3D mesh in order to form geodesic maps for the detection
of the head, hand and foot.

Ilic and Fua [14] use implicit surfaces, extracted from
arbitrary triangulated meshes, to model the upper human
body. Stoll et al. [26] model both human body and image
domain as sums of Gaussians to perform fast articulated
motion tracking, while Sigal et al. [25] employ a loose-
limbed body model to track humans using a non-parametric
belief propagation optimization schema. John et al. [15]
formulate the tracking problem as a multi-dimensional non-
linear optimization, solved using particle swarm optimiza-
tion, while Gall et al. [7] propose a multi-layer generative
system combining global optimization (simmulated anneal-
ing), filtering to smooth out jitter and local optimization, to
refine the estimated pose.

As already stated, many of the pose recovery approaches
need an initialization step in order to perform effectively.

For example, in [11] the model (human) size is known and
the starting position predefined, whereas in [28] the system
requires a T-pose initialization to size the model. Addition-
ally, the latest version of the OpenNI [19] skeletonization
module, needs to register and track the user for a number of
frames or seconds as an initialization phase. Nevertheless,
and despite the fact that precise details of the end-to-end
tracking algorithm are not publicly available, OpenNI is a
widely used library in the computer vision and HRI fields.

On the other hand, recent classification approaches ( [1,
24, 27]), although quite robust in (semi)controlled set-ups,
exhibit certain weaknesses which limit performance in real
life scenarios. Occlusions, loss of sensor data, interactions
among multiple users and/or objects may lead to false pos-
itive detections, either by misclassifying body parts or by
classifying non-human objects as human parts.

In the current work, we aim to overcome such shortcom-
ings and come up with a methodology able to robustly and
accurately infer the body pose of multiple users, which act
and move freely in naturalistic environments and set-ups.

2. Methodology Overview

An overall schematic representation of the steps em-
ployed in our method for human-torso 3D pose recovery
is given in Fig 1. Initial face identification triggers a seg-
mentation step that delineates the human-body area. Based
on that, approximation and 3D modeling of shoulder joints
is then performed, which subsequently steers modeling -via
a non-linear regression schema- of the torso area as a 3D
ellipsoid. The latter is used to extract the torso 3D pose pa-
rameters. More specifically, the major steps of the proposed
approach are:

• Agent Segmentation. Based on face detection and
tracking, the human body silhouette is extracted for the
detected users in the scene.

• Shoulder joint approximation. Given the location of
the face, we select sets of points on the RGB silhou-
ette, delineating possible shoulder or armpit areas. Se-
lection is based on pose and scale invariant features
satisfying certain geometric constraints. The selected
silhouette points are used to define the 2D area of the
shoulder joint and thus, using the depth information,
the 3D shoulder joint point cloud. Shoulder joints are
approximated by least squares fitting of 3D spheres on
the selected areas on the point cloud and a set of an-
thropometric criteria is used to evaluate the estimation
and eliminate possible outliers.

• Body pose estimation. Driven by the detection of
the shoulder joints, a set of 3D points, approximately
along the user’s upper-body, is selected and used for
torso approximation via an ellipsoid. A custom itera-
tive algorithm, resembling gradient descent optimiza-



Figure 1. Methodology overview. Assuming the location of the face, the user is segmented from the rest of the scene and his silhouette
is extracted. Points along the silhouette are then selected and used to estimate the location of the shoulder joints. Finally, the resulting
shoulder joints define the area of the user’s torso, on which the ellipsoidal torso model is fitted, in order to infer the upper body pose.

tion, is used to fit the ellipsoid model on the selected
point cloud.

In the following we elaborate on the above described steps.
It is noted that specific quantitative parameters regarding the
human-body are required as input in our method. Since an
initialisation step is intentionally excluded in our method,
we rely on established anthropometric proportions to set
these parameters relative to the human-body height; the lat-
ter is readily available as a by-product of the position of the
detected face, assuming that the user is entering the scene
in upright position.

2.1. Agent Segmentation

The first step in agent segmentation regards detection
of the user’s face, which is based on previous work on
skin color detection and tracking [2, 3]. An initial back-
ground segmentation (using a standard segmentation tech-
nique [29]), is applied and foreground pixels are character-
ized according to their probability to depict human skin and
grouped together into solid skin color blobs using hystere-
sis thresholding and connected components labeling. The
location and the speed of each blob is modeled as a discrete
time, linear dynamical system which is tracked using the
Kalman filter equations, according to the propagated pixel
hypotheses algorithm, as in [2]. Information about the spa-
tial distribution of the pixels of each tracked object (i.e.
its shape) is passed on from frame to frame using the ob-

ject’s current dynamics, as estimated by the Kalman filter.
The density of the propagated pixel hypotheses provides the
metric, which is used in order to associate observed skin-
colored pixels with existing object tracks in a way that is
aware of each object’s shape and the uncertainty associated
with its track (Fig. 2(b)). Finally, blobs are further clas-
sified into face and hands (Fig. 2(c)), and the belief about
their class is maintained and continuously updated. For this
purpose we employ an incremental probabilistic classifier,
as in [3], using as input the speed, orientation, location and
contour shape of the tracked skin-colored blobs. This clas-
sifier permits identification of hands and faces of multiple
humans and is able to maintain hypotheses even in cases of
partial occlusions. Based on the detected face, we extract
the user’s silhouette by depth thresholding using connected
components labeling and the face centroid projected onto
the point cloud as seed point. The silhouette is further re-
fined via a cubic spline fitting to secure piecewise continu-
ity.

2.2. Shoulder joint approximation

Given the location of the face, we select sets of points
on the RGB silhouette, delineating possible shoulder areas.
Selection is based on pose and scale invariant features satis-
fying certain geometric constraints. Naturally, the shoulder
area on the silhouette is characterized by two body parts:

• acromial or shoulder point. That is the upper part of



Figure 3. Curvature analysis for left and right parts of the user’s silhouette.

(a) (b) (c)
Figure 2. User tracking using skin colored blobs detection and
tracking. (a) original RGB image, (b) skin colored hypotheses,
(c) hypotheses classification into faces and hands.

the shoulder (red points in Fig. 3) and is robustly de-
tectable for all configurations where the elbow is below
the shoulder.

• axillary or armpit. That is the area ”below” the shoul-
der (light blue points in Fig. 3). Similarly to acromial,
the armpit is visible in most of the shoulder-elbow con-
figurations and is scale and pose invariant.

Curvature analysis of the silhouette’s spline results with
the location of the aforementioned body parts, as depicted in
Fig. 3. In order to limit our search space, we first locate an
approximation to the neck, which exhibits the highest pos-
itive curvature response. This point steers the detection of
either the shoulder, which exhibits high negative response,
or the armpits with significant positive curvature. Anthro-
pometric measurements, can be used in order to eliminate
possible outliers, such as the hand on the left silhouette part
of Fig. 3.

Given the extracted silhouette segments, a connected
components procedure is performed to select the enclos-
ing 2D shoulder area (Fig. 4(a)) which, in turn, provides
the 3D point cloud around the shoulder joint. A standard
least squares fitting algorithm is used to fit a sphere on the
resulting point cloud (green spheres in Fig. 4(c)), which ap-
proximates the position of the shoulder joint. The estimated
size of the shoulder joint is used to bound the radius of the
sphere within certain limits and, thus, facilitate and speed
up convergence.

(a) (b) (c) (d)
Figure 4. (a) Selected shoulder area for sphere fitting. (b) Selected
points along user’s body and arms for ellipsoid fitting. (c) Approx-
imated shoulder joints (green spheres), upper body (red ellipsoid),
upper and forearms (blue and yellow ellipsoids respectively). (d)
”Pseudo-distance” for ellipsoid fitting.

Shoulder evaluation and tracking

Given variations of the human appearance and/or arti-
facts in the user’s silhouette, multiple shoulder detections
(shoulder candidates) are possible. Since arbitrary thresh-
olding or elimination of certain candidates is not robust, we
evaluate the shoulder candidates in pairs (left - right shoul-
der), against criteria imposed by the user’s anthropometry.
Such robust criteria in the studied case are the torso width
and the distance between the face centroid and the mid-
point of the two shoulders. In all our experiments, we set the
former to be at approximately 0.25 of the estimated height,
and the latter at approximately 0.18 of the estimated height.

The candidate pair with the highest score represents the
selected shoulder joint locations. Subsequently, each shoul-
der is independently tracked over time by means of an Ex-
tended Kalman filter, thus providing a smooth trajectory of
shoulder 3D locations.

2.3. Body pose estimation

In order to robustly utilize information in the 3D point
cloud of the human body, we model the human torso using
an arbitrarily oriented 3D ellipsoid. Given the approximate
3D location of the two shoulders, we sample points along
the user’s body (white dots in Fig. 4(b)) and attempt to fit a



3D ellipsoid on the resulting point cloud with a non-linear
regression algorithm (Fig. 4(c)). In order to ensure sam-
pling of points which indeed lie on the user’s body, con-
nected components with respect to spatial criteria (both 2D
and 3D) are imposed on the selection mechanism. Such a
representation adequately describes the morphology of the
body and provides robust information about the full upper
body pose of the user. However, fitting an ellipsoid to a
point cloud requires extensive computations, which need to
be relaxed for real time implementation. For this purpose,
we adopt a custom optimization algorithm, inspired by the
gradient descent technique for the typical least squares fit-
ting method, which greatly accelerates computations with-
out jeopardizing fitting accuracy.

An arbitrarily oriented 3D ellipsoid can be parametri-
cally expressed as:

(X − C)TRTAR(X − C) = 1, (1)

where X = [x, y, z]T is a 3D point on the ellipsoid’s sur-
face, C = [xc, yc, zc]

T is the center of the ellipsoid, R is
a 3x3 rotation matrix, denoting the 3D orientation of the
ellipsoid, and A is a 3x3 diagonal matrix with:

A = [
1/a2 0 0
0 1/b2 0
0 0 1/c2

], (2)

where a, b and c denote the three semi-axes of the ellipsoid.
The objective function to minimize, in order to fit an ar-

bitrary ellipsoid on a given set of 3D data points, is given
by:

E =
∑

(XP − P )2, (3)

which is the sum of squared distances between the point
cloud and the ellipsoid (see Fig. 4(d)). However, estimat-
ing the closest point XP on the surface of the ellipsoid to
a given 3D point P of the point cloud, is a computation-
ally demanding task. For this reason, we instead estimate a
”pseudo-distance” given by the intersection of the ellipsoid
and the ~PC ray (denoted as X̂P in Fig. 4(d)) which is then
used in the minimization process. X̂P is easily computed
by:

X̂P = P + t(C − P ), (4)

where 0 ≤ t ≤ 1. Therefore, in order to estimate X̂P , we
need to solve for t. By substituting X̂P in Eq.( 1) we end
up with:

t = 1±
√

1/K, (5)

where K = (P − C)TRTAR(P − C). This formulation
gives rise to an extremely efficient implementation, appro-
priate for real-time performance.

As seen above, an ellipsoid is described by 9 degrees of
freedom (center, radii and orientation). Partial derivation
of the objective function of Eq. 3, with respect to each of

these variables, requires computation of rather complex an-
alytical expressions, including hundreds of terms each. To
overcome this, we resort to a finite differences approach,
using binary search in the state space, with an adaptive step
strategy. This technique resembles the gradient descent op-
timization, drastically reducing computational costs. Given
an initial estimation, we move along the dimensions which
reduce the response of Eq. 3, until no further improvement
is possible or a predetermined termination condition is met.
The location and orientation of the shoulder joints and the
approximated torso size provide the algorithm with strong
initial parameter values. This significantly enhances and
speeds up convergence within only a small number of it-
erations (approx. 10), as has been experimentally verified.

Towards arm tracking

The above described methodology can be extended in or-
der to estimate and track the pose of the full upper body, in-
cluding the arms. Although not examined thoroughly, early
experiments indicate the plausibility of such a generaliza-
tion, as verified by promising results. Similarly to the body,
arm parts (upper and forearm) are modeled as ellipsoids, the
size of which is approximated using anthropometric con-
straints w.r.t. the user height. As before, a connected com-
ponents procedure is employed to select areas belonging to
each arm part accordingly. Spatial information and self-
exclusion rules combined with information on skin blobs
classified as hands, from 2.1, are used in order to end up
with the arms point clouds, on which the relevant ellipsoid
is fitted, as seen in Fig. 4 (b, c).

3. Results

The method presented in this paper extracts information
about the upper body pose of users which enter, leave, move
or act freely in the scene. In order to evaluate our approach
we conducted a series of experiments, with varying diffi-
culty levels. Our experiments involve both single and mul-
tiple users, assuming several poses, in various relative to
the camera positions and orientations, mostly in cluttered
environments. In six of these experiments, we have at-
tached markers on the shoulders of the users, in order to
obtain ground truth and evaluate quantitatively our method.
Additionally, a comparison against the widely used skele-
tonization module of OpenNI has been performed, using
again the ground truth data. As will be verified, our method
successfully managed to extract robust information about
the user’s upper body pose, coping with variations in scale,
posture, distance from the camera, clothing and sex across
users. Furthermore, the fact that no explicit initialization is
required, results to high detection rates and also facilitates
its employment in real life scenarios.



Ours OpenNI Ours OpenNI Ours OpenNI
Test case DP µE σE

1 99.43% 88.07% 6.73 ◦ 9.98 ◦ 6.64 ◦ 8.31 ◦

2 97.06% 25.35% 6.69 ◦ 12.31 ◦ 8.40 ◦ 8.39 ◦

3 92.30% 83.81% 4.88 ◦ 7.91 ◦ 3.15 ◦ 7.13 ◦

4 99.47% 77.02% 6.70 ◦ 10.42 ◦ 4.49 ◦ 6.11 ◦

5 98.83% 0% 3.48 ◦ −−− 2.94 ◦ −−−
6 93.76% 0% 8.92 ◦ −−− 8.80 ◦ −−−

Average 96.80% 68.56% 6.23 ◦ 10.15 ◦ 5.73 ◦ 7.48 ◦

Table 1. Comparative statistics. DP= percentage of frames where body orientation was estimated, µE=mean orientation error throughout
the sequence, σE= standard deviation of error. Columns in bold-font refer to the proposed method, whereas normal-font refer to OpenNI.

Quantitative Results

As already mentioned, we conducted a series of experi-
ments in order to extract quantitative information about the
performance of our method. More precisely, we tested 6
sequences (summing to a total of more than 5000 frames)
of single users performing a variety of poses, in an office
environment. We used prominent colored markers, on the
user’s clothing, in order to unambiguously detect the actual
location of the shoulders and provide ground truth for the
body orientation. Additionally, we also tested the skele-
tonization module of the OpenNI against the ground truth,
and compared the results with those of our methodology,
considering the body orientation (angular) error.

Fig.5 shows a variety of indicative resulting images from
the ground truth sequences. The user is roughly turned to
the camera and performs a series of poses, by raising ei-
ther or both hands and rotating, bending or stretching his
body with respect to the camera. The actual (ground truth)
orientation (in degrees) and the estimated ones by the two
methods are superimposed on the images at the upper part
of each one. Additionally, the thick white arrow depicts the
actual orientation, while the green and red ones illustrate the
estimation of our methodology and OpenNI, respectively.

The ground truth sequences were used in order to de-
rive a set of statistics which attest for the robustness and
effectiveness of our methodology. For each sequence, we
gathered three types of information: percentage of frames
where an estimation has been provided (DP), mean error
of the estimated from the actual orientation (µE) and stan-
dard deviation of the error (σE). The average values shown,
are calculated over only the frames where an estimation has
been derived. As can be observed in Table 1, our method
performed significantly better in all cases, achieving very
small average error. Additionally, the fact that no initializa-
tion is required results to fast pose estimation and high de-
tection rates (> 90%). On the other hand, OpenNI couldn’t
effectively cope with the initialization problem, which con-
sequently led to either low detection rates (e.g. 25% in test
case 2) or no detection at all for a whole sequence (e.g. test

cases 5-6 in Table 1). Some of these cases are depicted in
Fig.6.

Qualitative Results

In addition to the quantitative experiments, we exten-
sively tested our method in numerous scenarios, by modyf-
ing the environment, the number of users in the scene and
the type of interaction. On top of that, we also tested our
method on a robotic bar-tending simulating scenario (right-
most image in Fig. 7), serving as attention seeking detec-
tor and providing input for the robot’s social planner about
whether or not a user needs to be served. As illustrated in
Fig. 7, the proposed approach could effectively extract the
body pose in all cases, dealing with both male and female
users, of varying postures and proportions, performing nu-
merous acts. Moreover, with a rather straightforward C++
implementation, with no multi-threading or GPU program-
ming, on a standard commercial PC (Intel i7 3.5 GHz with 8
GBs or RAM) we managed to achieve real-time execution,
reaching a speed of approximately 25 frames per second for
a single user and 18 frames per second for two users in the
scene.

Results on arm pose tracking

Fig. 8 depicts initial results on arm pose recovery and track-
ing. Although still in a preliminary phase, the results are
very promising, as our system was able to estimate difficult
arm configurations, such as the one illustrated in the middle
image, where the arms are in front of the body.

4. Discussion

In this paper we presented a fast and robust methodol-
ogy for human-torso 3D pose extraction. Contrary to many
state-of-the-art approaches, our method avoids an explicit
pose initialization phase, which is not possible in com-
plex, real-life scenarios. Extensive testing in a large va-
riety of set-ups, involving multiple users, arbitrarily mov-
ing in the scene, has proved the effectiveness of the pro-



Figure 5. Comparison with OpenNI skeletonization module. In each image, the orientation (in degrees), ground truth and the estimation of
each method is shown at the upper part of each image. The thick white arrow depicts the ground truth orientation, the green one depicts
the estimated orientation of our methodology, and the red arrow depicts the orientation estimated by OpenNI.

Figure 6. Successful body pose estimation compared to OpenNI failure to register the user.

posed approach. More importantly, quantitative experimen-
tation against ground truth data, and comparative results
with those of OpenNI have revealed superior and robust per-
formance in demanding scenarios.

Our planned future work regards extension of the method
to cope with full-body pose recovery. The current body pose
tracking results, as well as the promising arm tracking pre-
liminary experiments, attest to the appropriateness of the
method for the task at hand. Nevertheless, important issues,
such as occlusion or interaction (between agents) handling
are still under investigation and will be the immediate target
of our future research.
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